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Figure A.1: Warping window of size 3.

A Warping window and cross-validation

An example of warping window and associated warping
path is given in Figure A.1.

Algorithms A.1 and A.2 present the leave-one-out
cross-validation (LOOCV) approach to learning the
warping window.

Algorithm A.1: SOTAWWSearch(T , LB)

Input: Data T , lower bound LB
Result: w?: the WW with lowest CV error

1 bestNErrors ← |T |+ 1
2 for w ← 0 to L− 1 do
3 nErrors ← 0
4 foreach S ∈ T do
5 nn← LBNNSearch(S, T \ {S}, w, LB) if

nn.class 6= S.class then
6 nErrors ← nErrors+1

7 if nErrors < bestNErrors then
8 w? ← w
9 bestNErrors ← nErrors

10 return w?

Algorithm A.2: LBNNSearch(S, T , w, LB)

Input: Query S, data T , warping window w
Result: NN: Nearest neighbor of S in T

1 NN .dist← +∞
2 foreach T ∈ T do
3 if LBw(S, T ) < NN .dist then
4 if DTWw(S, T ) < NN .dist then NN← T

5 return NN

B Fail-Safe Experiment

Table 1 shows the warping window learnt by all the
methods on some of the UCR benchmark datasets [1]
using exhaustive search (searching all possible warping
windows). Please refer to http://bit.ly/SDM18 for the
full detailed results. Note that the results reported here
are the actual warping window and not a percentage
of the L (commonly done in the literature [1, 4, 2].
As expected, all the methods learnt the same warping
window.

Figure B.1 shows the classification accuracy on the
UCR Benchmark datasets [1] using the best warping
window found for each individual method. Since all the
methods are exact and that we are performing an ex-
haustive search (i.e. finding all possible warping win-
dows w = {0, 1, 2, ..., L}), the best warping window
found for each method is the same. Hence, the clas-
sification accuracy is the same. The only difference is
the time which can be referred to Figure 6 in our main
paper.

C Is it worth incorporating PrunedDTW
within FastWWSearch?

It is interesting to examine if PrunedDTW could pro-
vide further improvements to our method. As the
PrunedDTW algorithm [3] is able to speed up DTW
computations, it is interesting to study if its incorpo-
ration into our algorithm could bring further benefits.
Our method requires the different windows to be tested

http://bit.ly/SDM18


Best warping window learnt by the following methods
Datasets LB Keogh UCR Suite LB Keogh–

PrunedDTW
UCR
Suite–

PrunedDTW

FastWWSearch

50words 24 24 24 24 24
Adiac 6 6 6 6 6
ArrowHead 0 0 0 0 0
Beef 0 0 0 0 0
BeetleFly 36 36 36 36 36
BirdChicken 33 33 33 33 33
CBF 14 14 14 14 14
Car 9 9 9 9 9
ChlorineConcentration 0 0 0 0 0
CinC ECG torso 10 10 10 10 10
Coffee 0 0 0 0 0
Computers 74 74 74 74 74
Cricket X 31 31 31 31 31
Cricket Y 47 47 47 47 47
Cricket Z 15 15 15 15 15
DiatomSizeReduction 0 0 0 0 0
DistalPhalanxOutlineAgeGroup 1 1 1 1 1
DistalPhalanxOutlineCorrect 2 2 2 2 2
DistalPhalanxTW 0 0 0 0 0
ECG200 0 0 0 0 0
ECG5000 1 1 1 1 1
ECGFiveDays 0 0 0 0 0
Earthquakes 17 17 17 17 17
ElectricDevices 13 13 13 13 13
FISH 19 19 19 19 19
FaceAll 4 4 4 4 4
FaceFour 6 6 6 6 6
FacesUCR 16 16 16 16 16
FordA 2 2 2 2 2
FordB 6 6 6 6 6

Table 1: Learnt warping window from all the methods on some of the Benchmark datasets [1]



FastWWSearch, classification accuracy
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
om

p
et

it
or

s,
 c

la
ss

if
ic

at
io

n
 a

cc
u
ra

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Competitor is more accurate here

                                      FastWWSearch is more accurate here

LB_Keogh
UCR Suite
LB_Keogh-PrunedDTW
UCRSuite-PrunedDTW

Figure B.1: Classification accuracy on the UCR Bench-
mark datasets [1] using the best warping window found
for each method

in descending order, in order to reuse previously cal-
culated results as lower bounds to current ones. This
is incompatible with a PrunedDTW search, which re-
quires the windows to be assessed in ascending order, to
use previous results as upper bounds to the next ones
[3]. However, we could still use PrunedDTW when-
ever we have to calculate DTW, and use the Euclidean
distance as a general upper bound [3]. This is how we
incorporate PrunedDTW into FastWWSearch.

Figure C.1 compares our original FastWWSearch
with a version incorporating PrunedDTW. The results
show that both methods have similar running times,
with the addition of PrunedDTW making it possi-
ble to gain some speed-up for low-runtime datasets
(i.e. datasets that are either small or have short
time series or both). Using FastWWSearch vanilla
seems to be even faster for high-runtime datasets.
Overall, for approximately 55% of the UCR archive,
FastWWSearch vanilla is faster than having added
PrunedDTW. This is because for high-complexity
datasets, it seems that the added pruning power doesn’t
outweigh the additional computations of the upper
bound that PrunedDTW requires. Overall, the take-
home message here is that our method is totally com-
patible with PrunedDTW and that its incorporation is
left at the discretion of the data practitioner, depending
on their application.

FastWWSearch, search time (s)
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Figure C.1: Comparison of our method with the
PrunedDTW implementation on the benchmark
datasets
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