Ultra Fast Warping Window Optimization for Dynamic Time Warping

CW. Tan

M. Herrmann

G.I. Webb

Outline

- 1. Introduction
- 2. Why learn the best warping window?
- 3. How to learn the warping window?
- 4. Current state of the art
- 5. Our method Ultra Fast Warping Window Search
- 6. Results
- 7. Conclusion and future work

What is a Time Series?

- Collection of observations made sequentially, more intuitive visually
- Many data can be transformed into time series → Satellite Image Time Series

Dynamic Time Warping

- a.k.a. **DTW** similarity function to align time series $O(L^2)$
 - Every possible alignment of Q and C is a warping path, \vec{p}

 $\vec{p} = [w_1, \dots, w_K]$

- $w_k = (i, j)$ represents an association of $q_i \leftrightarrow c_j$ aligned by DTW
- DTW(Q, C) finds the cheapest warping path ("best")
- Used in many fields: Classification, Regression, Clustering, ...
 - Nearest Neighbour Algorithm (NN-DTW)

Warping Window

• Warping Window, w is a global constraint on the alignment of DTW such that the elements of Q and C can only be mapped if they are less than w apart, $w = \{0, ..., L\}$

Why learn the best warping window?

- Strong influence on accuracy
 - On **CinC ECG torso** dataset, error rate reduced from 35% to 7%
 - NN-DTW with learnt warping window performs better
- Speedup DTW
 - Smaller *w* means we don't need to compute the full DTW matrix
 - Reduce the complexity down to $O(w \cdot L)$

[1] Tan, C. W., Herrmann, M., Forestier, G., Webb, G. I., & Petitjean, F. (2018, May). Efficient search of the best warping window for dynamic time warping. In *Proceedings of the 2018 SIAM International Conference on Data Mining* (pp. 225-233). Society for Industrial and Applied Mathematics.

How to learn the best warping window?

- for w = 0 to L do \longrightarrow Parameter to NN-DTW algorithm
 error = 0
 for each s in T do
 nn_s = nn_search(s, T \s, w)
 if nn_s. class \neq s. class then error++
 - if error < bestError then
 bestWW = w
 bestError = error</pre>

Naïvely learns the best warping window requires $O(N^2L^3)$ operations [1]

[1] Tan, C. W., Herrmann, M., Forestier, G., Webb, G. I., & Petitjean, F. (2018, May). Efficient search of the best warping window for dynamic time warping. In *Proceedings of the 2018 SIAM International Conference on Data Mining* (pp. 225-233). Society for Industrial and Applied Mathematics.

Fast Warping Window Search

- Efficiently fill up a NN table, giving the nearest neighbour of every time series for all windows
- Naïvely create the table using DTW, requires $\theta(N^2L^3)$ operations

Prior approaches typically go from smallest to largest with a subset of windows

FastWWS goes from largest to smallest, fast enough to test all windows

FastWWS Intuition

Warping path can be valid for several windows

- w has a "validity"
- skip computations of all valid w
- Example:
 - Warping path is valid to w = 6
 - $DTW_{24}(Q,C) = DTW_6(Q,C)$
 - Skip all DTW from $w = [24, \dots, 6]$

w	 4	5	6	7	 23	24
$DTW_{\mathbf{W}}(\mathbf{Q},\mathbf{C})$	 8.82	8.36	8.04	8.04	 8.04	8.04

Full DTW, w = 24

FastWWS Intuition

• FastWWS goes from largest to smallest, applies to all or a subset of windows

FastWWS is **FASTER** and more **EFFICIENT** than previous methods!

FastWWS is still slow

Time (s) in log scale

Ultra Fast Warping Window Search for DTW

- Built upon FastWWSearch
- Inspired by EAP-DTW [1] to speed up FastWWSearch
- 6 primary strategies
 - 1. Replaces DTW with a more efficient EAP-DTW
 - 2. Uses early abandoning of EAP-DTW
 - **3.** Establishes tighter upper bound for EAP-DTW
 - 4. Ordering the time series to best exploit the efficient pruning and early abandoning power of EAP-DTW
 - 5. Removes DTW lower bounds, which 1-4 render redundant
 - 6. Using the window validity to skip most window sizes altogether

Early Abandoning and Pruning

Original DTW cost matrix 81 computations

Early abandoned DTW cost matrix 23 computations cut-off = 1

Tighter Upper Bounds for EAP-DTW

• Minimise DTW_L - the most expensive operation of UltraFastWWS

ensures that we always and only calculate the actual *DTW* when we need to

 $UB = \begin{cases} \max(NN_{w}^{Q}, NN_{w}^{C}), & NN_{w}^{Q} \text{ and } NN_{w}^{C} \text{ is computed} \\ \text{EuclideanDistance}(Q, C), & NN_{w}^{Q} \text{ and } NN_{w}^{C} \text{ not computed} \end{cases}$

Euclidean Distance is a better upper bound for DTW than the commonly used ∞ .

It corresponds to the parameter w = 0, that gives the largest distance between (Q, C)

Filling the NN table

Specific ordering to exploit efficient pruning and early abandoning power of EAP-DTW

- Minimize the upper bound used in each call to *DTW*
- More productive to initially pair with T_T with large NN distance

W	0	1	2	3	4	5		L-3	L-2	L-1
T_1	$T_3(2.21)$	$T_3(1.89)$	$T_2(1.57)$	$T_2(1.35)$	$T_2(1.22)$	$T_2(0.98)$	$T_2(0.98)$	$T_2(0.98)$	$T_2(0.98)$	$T_2(0.98)$
<i>T</i> ₂	$T_5(2.78)$	$T_5(2.54)$	$T_5(2.35)$	$T_5(2.14)$	$T_5(1.92)$	$T_5(1.92)$	$T_5(1.92)$	$T_5(1.92)$	$T_5(1.92)$	$T_5(1.92)$
T_3	$T_4(1.15)$	$T_4(1.01)$	$T_4(0.81)$	$T_4(0.59)$	$T_4(0.34)$	$T_4(0.19)$	$T_4(0.19)$	$T_4(0.19)$	$T_4(0.19)$	$T_4(0.19)$
T_4	$T_2(1.09)$	$T_2(0.99)$	$T_2(0.76)$	$T_2(0.56)$	$T_2(0.56)$	$T_2(0.56)$	$T_2(0.56)$	$T_2(0.56)$	$T_2(0.56)$	$T_2(0.56)$
T_5	$T_1(2.51)$	$T_1(2.46)$	$T_1(2.37)$	$T_1(2.21)$	$T_3(1.83)$	$T_3(1.83)$	$T_3(1.83)$	$T_3(1.83)$	$T_3(1.83)$	$T_3(1.83)$
S										
						1				1
	4. Kee	ep track o	f the can	didate	3.	3. Process in 2. Skip to the 1.			1. Process	

with the smallest NN distance at w + 1and start w from this candidate

Experimental Evaluation

- Evaluate the efficiency of UltraFastWWS \mathscr{D}
 - 1. LOOCV with DTW
 - 2. LOOCV with EAP-DTW
 - 3. LOOCV with UCR Suite
 - 4. FastWWS with DTW
 - 5. FastWWS with EAP-DTW
- Exhaustive search over 101 window sizes on all methods
- Average results over 5 runs for different reshuffling of T
- 128 benchmark time series datasets

Speeding up State of the Art

Ablation Study

Scalability to large and long datasets

Conclusion and Future work

- An exact algorithm to speedup the search for the best parameter (warping window) for NN-DTW
 - UltraFastWWS is more EFFICIENT and FASTER
 - UltraFastWWS completes the training on all 128 datasets within 4 hours, a time comparable to one of the most scalable TSC algorithm (ROCKET [1])
- Improve scalability and accuracy of Ensemble of Elastic Distances

- Our results and source code are online at
 - <u>https://github.com/ChangWeiTan/UltraFastWWS</u>
 - Slides: https://changweitan.com/research/ICDM21-slides.pdf

[1] Dempster, A., Petitjean, F., & Webb, G. I. (2020). ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels. *Data Mining and Knowledge Discovery*, 34(5), 1454-1495.

