

# Tamping Effectiveness Prediction using Supervised Machine Learning Techniques







Professor Geoff Webb



Institute of Railway Technology



Dr François Petitjean



**Dr Paul Reichl** 





# Outline

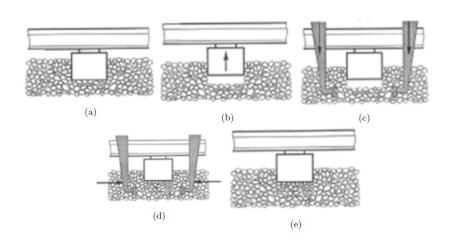
- 1. Tamping Maintenance
- 2. Motivation
- 3. Methodology
  - Data
  - Machine Learning techniques
- 4. Results
- 5. Conclusion & Future Work

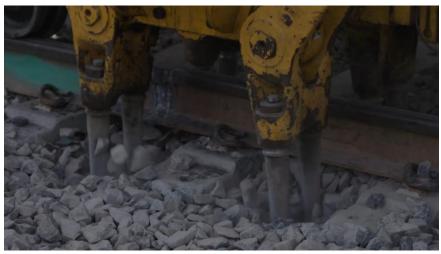




# **Tamping Maintenance**

Reset track geometry by rearranging the ballast particles



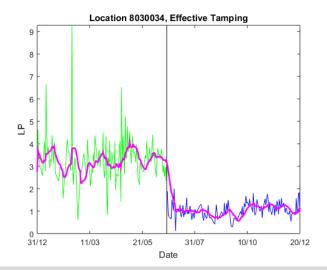


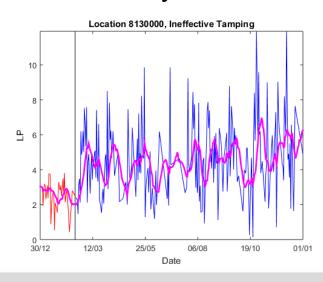




# **Motivation**

- Historical data shows that it is not always effective
- Ineffective tamping reduces tracks' life-cycle









#### What can we do?

- Predict Tamping Effectiveness
- A recent work calculates tamping effectiveness using ratio of average responses before and after tamping.
- Challenging problem due to many complex phenomena
- Important for 3 reasons
  - 1. Minimise maintenance cost and time
  - 2. Reduce unplanned downtime
  - 3. Avoid cost of failure recovery





# Predict if tamping will be effective for a track location

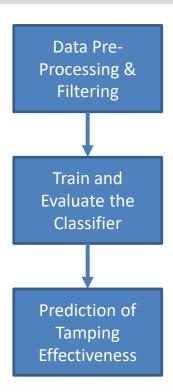






#### How to do it?

- 1. Data pre-processing & filtering
  - Convert acquired data from Instrumented Revenue Vehicles (IRVs) into time series for each track location
- 2. Train a classifier
  - k-Nearest Neighbours
  - Classification tree
  - Naïve Bayes
- 3. Evaluate and cross-validate the performance of the classifier
- 4. Predict tamping effectiveness







### 1. Data – Instrumented Revenue Vehicles (IRVs)

- Continuous monitoring system that uses measured wagon's dynamic activity to infer information about track condition
- Installed on normal revenue wagons
  - Cheap
  - Do not affect normal operations
- Measures:
  - Speed
  - Axle Load
  - Suspension
  - In Train Forces

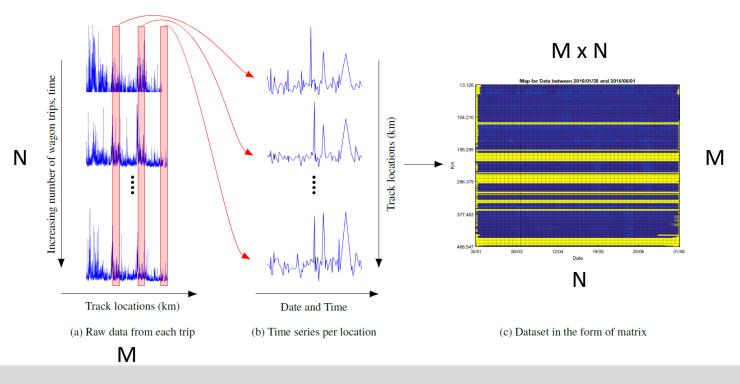


Image taken from <u>UniversalMechanism</u>





#### 1. Data – IRVs Time Series







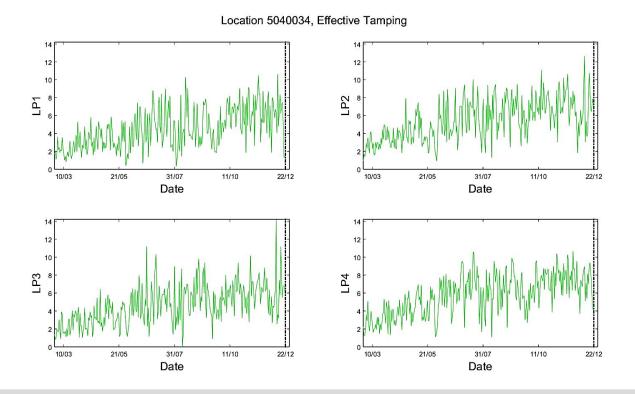
#### 1. Data – IRVs Time Series

- Multivariate sensor data from IRVs collected between February to July 2016
- Multiple trips form a 4 dimensional time series for each track location
- Filters
  - Locations without tamping
  - Locations with less than 30 trips
- Pre-process
  - Linearly interpolate missing data
  - Label each location with tamping effectiveness
    - Effective and Ineffective
- Resample data to days with the average of the day





#### 1. Data – Instrumented Revenue Vehicles Time Series

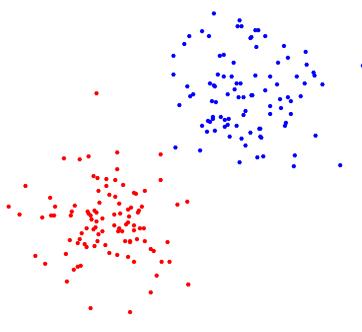






#### 2. Train a classifier

- Supervised machine learning
  - Train a classifier using labelled data
  - Training time
    - Learn the characteristics of the data using labelled data
  - Testing time
    - Label a query object using the learnt characteristics from the training data
- Time series classification
  - k-Nearest Neighbour (k-NN) Classifier







# 2. Train a classifier - Time series classification (TSC)

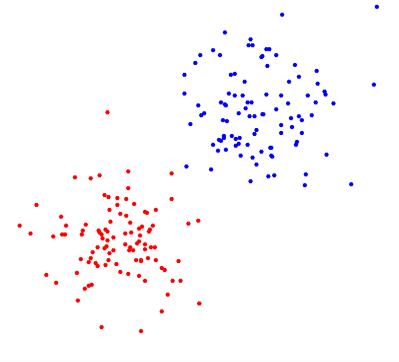
- Many algorithms that uses static features
  - Naïve Bayes
  - Classification Trees
- In most applications, features changes
- "Incorrect" to classify by observing only the static features
- k-NN is a better alternative





#### 2. Train a classifier - k-NN Classifier

- State-of-the-art for time series classification
  - Performed the best over a wide range of time series dataset
- Outperforms others with large database size
- Search for the k<sup>th</sup> most similar objects (time series)
- Labels the query using the majority label of the k<sup>th</sup> nearest neighbours
- Uses a similarity measure





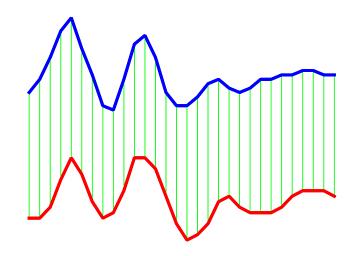


# 2. Train a classifier – Comparing time series (Euclidean Distance, ED)

- Calculate a distance between the two time series
- Simplest distance measure is Euclidean Distance (ED)

ED
$$(x, y) = \sqrt{\sum_{i=1}^{d} (x_i - y_i)^2}$$

- Euclidean distance cannot handle distortions in time axis, different length
- Time series are often shifted in time (distortions) with different length





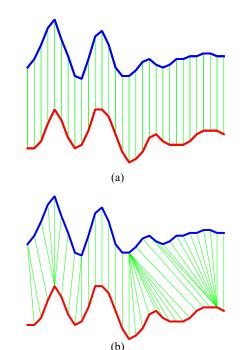


# 2. Train a classifier - Comparing time series (Dynamic Time Warping, DTW)

- Robust to time axis distortions and can handle different length
- Find alignment between two time series
- Given two time series X and Y of length n and m,

$$\mathrm{DTW}(X,Y) = \mathrm{ED}(x_1,y_1) + \min \begin{pmatrix} \mathrm{DTW}\big(\mathrm{Tail}(X),\mathrm{Tail}(Y)\big) \\ \mathrm{DTW}\big(\mathrm{Tail}(X),Y) \\ \mathrm{DTW}\big(X,\mathrm{Tail}(Y)\big) \end{pmatrix}$$

• Tail(X) = { $x_2, x_3, ..., x_n$ }





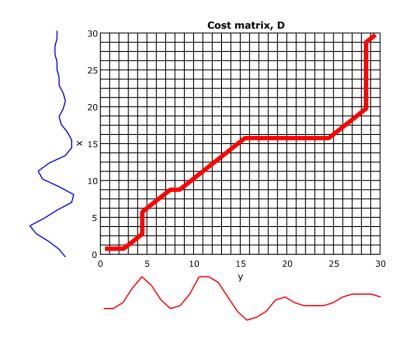


# 2. Train a classifier - Dynamic Time Warping (DTW)

- Dynamic Programming
- Constructs n×m cost matrix D and find a warping path (red) that minimises the alignment cost of the two time series

$$D(i,j) = ED(x_i, y_j) + \min \begin{pmatrix} D(i-1, j-1) \\ D(i-1, j) \\ D(i, j-1) \end{pmatrix}$$

$$DTW(X,Y) = D(n,m)$$







#### 2. Train a classifier - Classifiers

- k-Nearest Neighbour (k-NN)
  - State of the art and widely used in many TSC applications
  - Simple and effective algorithm that does not require training
  - Labels query by finding the k<sup>th</sup> most similar time series
- Classification Tree (CART)
  - Build a decision tree to classify the query based on some rules (features)
- Naïve Bayes
  - Classifies the query based on the posterior of each class observed from the features of training database





#### 3. Evaluation and Validation

- Binary classification
- Compute performance metric for both effective and ineffective tamping

- Accuracy, 
$$A = \frac{TP+TN}{TP+FP+TN+FN}$$

- Precision, 
$$P = \frac{TP}{TP + FP}$$

- Sensitivity, 
$$S = \frac{TP}{TP + FN}$$

- 
$$F_1$$
 Score,  $F_1 = 2 \cdot \frac{P \cdot S}{P + S}$ 

| _ | F <sub>1</sub> Score, | $F_1$ | = | 2 · | $P \cdot S$ |
|---|-----------------------|-------|---|-----|-------------|
|   | 1 = 0 0 . 0 ,         |       |   |     | P+S         |

- 10-fold cross validation
  - Split and validate the training database





Ineffective tamping

False negative (FN)

True negative (TN)

Actual\Predict

Effective tamping

Inffective tamping

Effective tamping

True positive (TP)

False positive (FP)

# 4. Tamping effectiveness prediction with *k*-NN

```
Algorithm 1: \varepsilon = \text{predict\_effectiveness}(Q, D)
   Input: Q: Query time series
   Input: D: Training dataset
   Output: \varepsilon: Tamping effectiveness
                                                                        List for K-NN
 1 \ knn = \emptyset;
 2 knn.distance = \infty
 3 for all C \in D do
      d = DTW(Q, C)
      if d < max(knn.distance) then
                                                                         Updates the list if
          remove the furthest neighbour from knn
                                                                         nearest than the
          knn.add(C,d)
                                                                         furthest distance
      end
 9 end
                                                                        Majority class
10 return \varepsilon = \text{mode}(knn.class)
```







- A. Classifiers comparison
- B. Early prediction of tamping effectiveness





#### Results – Classifiers comparison

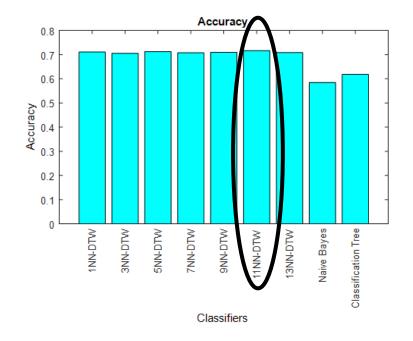
- Show that the state-of-the-art, k-NN works well even for multivariate time series in predicting tamping effectiveness
- Compare with Naïve Bayes and Classification Tree
  - k = 1,3,5,7,9,11,13 for k-NN
  - 6 statistical features, Mean, Standard Deviation, Skewness, Kurtosis, Maximum and Minimum for Naïve Bayes and Classification Tree.

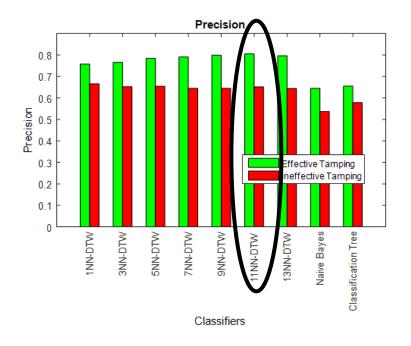




# Results – Classifiers comparison

- 11-NN has highest accuracy than other two
- 11-NN has highest precision in predicting both effective and ineffective tamp than other two

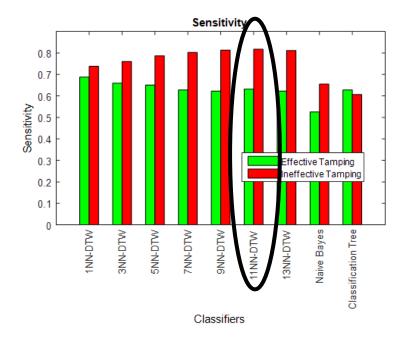




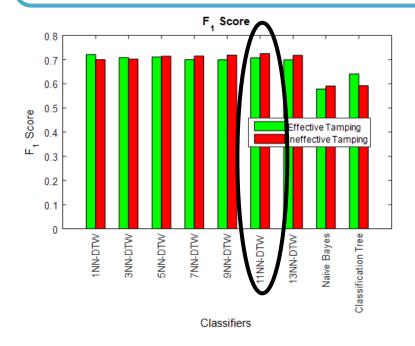




#### Results – Classifiers comparison



- 11-NN has higher Sensitivity in predicting both effective and ineffective tamp than other two
- 11-NN has higher F<sub>1</sub> Score in predicting both effective and ineffective tamp than other two







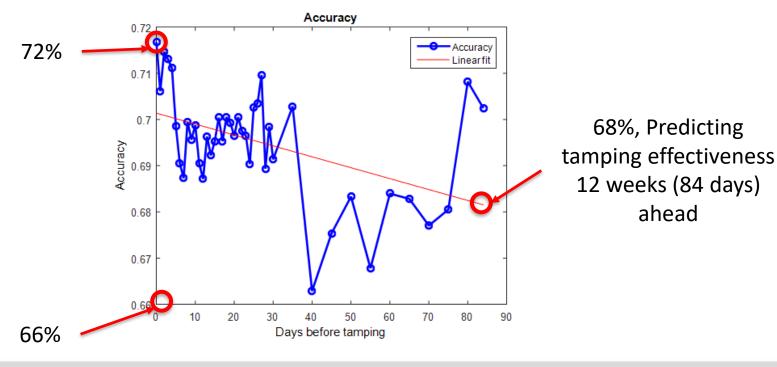
# Results – Early Prediction of Tamping Effectiveness

- Predict tamping effectiveness as early as possible, typically 12 weeks
- The earlier we know about the effectiveness, the better the maintenance can be planned.
- Procedure
  - 1. Truncate the existing time series by the number of days before tamping
  - 2. Predict the tamping effectiveness of the query location with 11-NN-DTW
  - 3. Repeat with days ranging from 0 to 84 days (12 weeks)





# Results – Early Prediction of Tamping Effectiveness







#### Conclusion

- Present a tamping effectiveness prediction system using k-NN-DTW.
- Showed that 11-NN-DTW gives good prediction.
- The system is able to give good prediction 12 weeks before tamping.
- Significance
  - Improve efficiency of railway track maintenance
  - Can be used with other maintenance procedures
- Future work
  - Optimise with more data
  - Predicting an actual response











www.irt.monash.edu