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Tamping Maintenance

• Reset track geometry by rearranging the ballast particles
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Motivation

• 30-40% of the tamping maintenance are shown to be ineffective

• Ineffective tamping reduces tracks’ life-cycle
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What can we do?

• Predict Tamping Effectiveness

• A recent work calculates tamping effectiveness using ratio of average 
responses before and after tamping. 
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Significance

• Challenging problem due to many complex phenomena
– Weather

– Soil properties 

• Important for 3 reasons
1. Minimise maintenance cost and time

2. Reduce unplanned downtime

3. Avoid cost of failure recovery
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Predict if tamping will be effective 
for a track location
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How to do it?

1. Data pre-processing & filtering
– Convert acquired data from Instrumented 

Revenue Vehicles (IRVs) into time series for each 
track location

2. Train a classifier
– k-Nearest Neighbours
– Classification tree
– Naïve Bayes

3. Evaluate and cross-validate the performance 
of the classifier

4. Predict tamping effectiveness

Historical data of 
a track location

Machine 
Learning System 

(Classifier)

Tamping 
effectiveness of 

a location
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1. Data – Instrumented Revenue Vehicles

• Continuous monitoring system that uses measured wagon’s dynamic 
activity to infer information about track condition

• Installed on normal revenue wagons
– Cheap

– Do not affect normal operations

• Measures:
– Speed

– Axle Load 

– In Train Forces

– Spring Nest Deflection (SND)
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1. Data – IRVs Time Series

M locations

N dates

M x N

N

M

Advancing the Railway Industry through 

Technology for over 45 Years

N

M



12

1. Data – IRVs Time Series

• 6 months multivariate sensor data from IRVs

• Multiple trips form a 4 dimensional time series for each track location

• Filters
– Locations without tamping

– Locations with less than 30 trips

• Pre-process
– Linearly interpolate missing data 

– Label each location with tamping effectiveness

• Effective and Ineffective

• Resample data to days with the average of the day
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1. Data – IRVs Time Series
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2. Train a Classifier

• Supervised machine learning
– Train a classifier using labelled data

– Training time

• Learn the characteristics of the labelled 
data

– Testing time

• Label a query object using the learnt 
characteristics from the training data

• Time series classification
– k-Nearest Neighbour (k-NN) Classifier 
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2. Train a Classifier – k-NN Classifier

• State-of-the-art for time series classification
– Performed the best over a wide range of time 

series dataset

• Simple and effective algorithm that does not 
require training

• Outperforms others with large database size

• Search for the kth most similar objects (time 
series)

• Labels the query using the majority label of 
the kth nearest neighbours

• Uses a similarity measure 

Query is 
red or blue
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2. Train a Classifier – Comparing Time Series 

• Calculate a distance between the two time 
series

• Simplest distance measure is Euclidean 
Distance (ED)

ED 𝑥, 𝑦 = 

𝑖=1

𝑑

𝑥𝑖 − 𝑦𝑖
2

• Euclidean distance cannot handle distortions 
in time axis, different length

• Time series are often shifted in time 
(distortions) with different length
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2. Train a Classifier – Dynamic Time Warping

Robust to time axis distortions and can handle •

different length

Find alignment between two time series•

Given two time series • X and Y of length n and m

DTW 𝑋, 𝑌 = ED 𝑥1, 𝑦1 +min

DTW Tail 𝑋 , Tail 𝑌

DTW Tail 𝑋 , 𝑌

DTW 𝑋, Tail 𝑌

Tail• 𝑋 = 𝑥2, 𝑥3, … , 𝑥𝑛
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2. Train a Classifier – Dynamic Time Warping 

• Dynamic Programming

• Constructs n×m cost matrix D and find a 
warping path (red) that minimises the 
alignment cost of the two time series

D 𝑖, 𝑗 = ED 𝑥𝑖 , 𝑦𝑗 +min

D 𝑖 − 1, 𝑗 − 1

D i − 1, 𝑗

D 𝑖, 𝑗 − 1

DTW 𝑋, 𝑌 = D 𝑛,𝑚
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2. Train a Classifier - Classifiers

• Classification Tree (CART)

– Build a decision tree to classify the query based on some rules (features)

Max(LP2) < 1.1667

Kurt(LP1) < 1.8489 Skew(LP4) < 2.3665

Effective Skew(LP4) < 0.0145 Kurt(LP3) < 24.0731 Min(LP3) < 0.7382

Y N

Y N Y N

EffectiveIneffective IneffectiveIneffective Effective......
...

Effective
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2. Train a Classifier - Classifiers

Naïve Bayes•

Classifies the query based on the posterior of each class observed from the –

features of training database

Given a set of features, what is the probability of tamping being –

effective/ineffective?

posterior=
prior×likelihood

evidence

posterior(eff)=
P(eff)p(μ | eff)p(σ2 | eff)⋯p(min | eff)

P(eff)p(μ | eff)⋯+ P(ineff)p(μ | ineff)⋯
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3. Evaluation and Validation

• Binary classification

• Compute performance metric for both effective and ineffective tamping

– Accuracy, A =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁

– Precision, P =
𝑇𝑃

𝑇𝑃+𝐹𝑃

– Sensitivity, S =
𝑇𝑃

𝑇𝑃+𝐹𝑁

– F1 Score, F1 = 2 ⋅
𝑃⋅𝑆

𝑃+𝑆

• 10-fold cross validation

– Split and validate the training database
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4. Tamping Effectiveness Prediction with k-NN

List for k-NN

Update the list if 
nearest than the 
furthest distance

Majority class
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A. Selecting the best classifier

B. Early prediction of tamping effectiveness
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Results – Selecting the Best Classifier

• State-of-the-art k-NN works well for univariate time series

• Show that k-NN works well even for multivariate time series in 
predicting tamping effectiveness

• Compare with Naïve Bayes and Classification Tree
– k = 1,3,5,7,9,11,13 for k-NN

– 6 statistical features

• Mean, Standard Deviation, Skewness, Kurtosis, Maximum and 
Minimum for Naïve Bayes and Classification Tree.
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Results – Selecting the Best Classifier

• 11-NN has highest accuracy than other two
• 11-NN has highest precision in predicting both effective and ineffective tamp than other two
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Results – Selecting the Best Classifier

• 11-NN has higher Sensitivity in predicting both effective and ineffective tamp than other two
• 11-NN has higher F1 Score in predicting both effective and ineffective tamp than other two
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Results – Selecting the Best Classifier (Why k-NN)

Many algorithms uses static features•

Naïve Bayes –

Classification Trees –

In most applications, features change over time•

• “Incorrect” to classify by observing only the static features

• k-NN will not be affected

Select • k-NN for the prediction 
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Results – Early Prediction of Tamping Effectiveness

• Predict tamping effectiveness as early as possible, typically 12 weeks

• The earlier we know about the effectiveness, the better the maintenance 
can be planned.

• Procedure

1. Truncate the existing time series by the number of days before tamping

2. Predict the tamping effectiveness of the query location with 11-NN-DTW

3. Repeat with days ranging from 0 to 84 days (12 weeks)
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Results – Early Prediction of Tamping Effectiveness

68%, Predicting 
tamping effectiveness 

12 weeks (84 days) 
ahead

72%

66%
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Conclusion and Future Work

• Present a tamping effectiveness prediction system using k-NN-DTW.

• Showed that 11-NN-DTW gives good prediction.

• The system is able to give good prediction 12 weeks before tamping.

• Significance

– Improve efficiency of railway track maintenance

– Can be used with other maintenance procedures

• Future work

– Optimise with more data

– Predicting an actual response

– Other features and classifiers
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