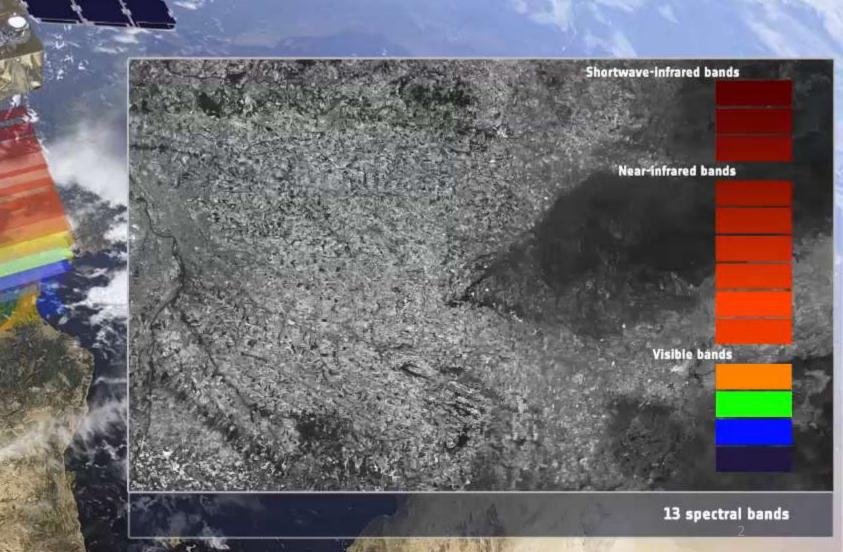
Indexing and Classifying Gigabytes of Time Series under Time Warping

G.I. Webb

C.W. Tan

F. Petitjean

2017 SIAM International Conference on DATA MINING 27 April 2017



Footage courtesy of ESA -European Space Agency

Temporal Land-Cover Maps

LEGEND OF THE MAPS

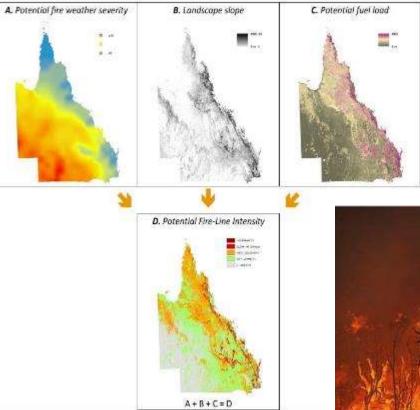
Color	Class					
	corn					
	corn for silage					
	non-irrigated corn					
	wheat					
	sunflower					
	sorghum					
	sorghum II					
	soybean					
	barley					
	pea					
100	rape					
	broad-leaved tree					
	conifer					
and a	poplar tree					
	eucalyptus					
	water					
	lake					
	gravel pit					
	meadow					
	temporary meadow fallow land					
	fallow land					
100	wild land					
	high density housing surface					
	specific urban surface					
	low density housing surface					
	mineral surface					

What can we do with it?

• Yield forecast

What can we do with it?

- Yield forecast
- Fire spread model



What can we do with it?

- Yield forecast
- Fire spread model
- City pollution absorption models
- and more...

One Image is not enough!

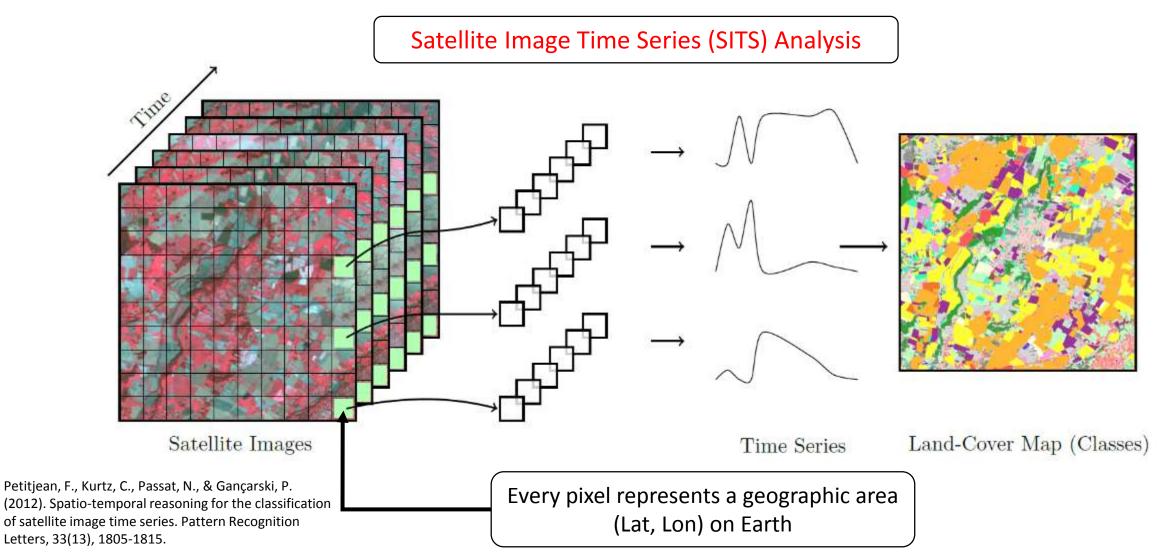


LEGEND OF THE MAPS

Impossible to differentiate them!

 eucalyptus water lake gravel pit meadow temporary meadow fallow land wild land high density housing surface specific urban surface low density housing surface mineral surface

What's possible? \rightarrow Temporal Evolution



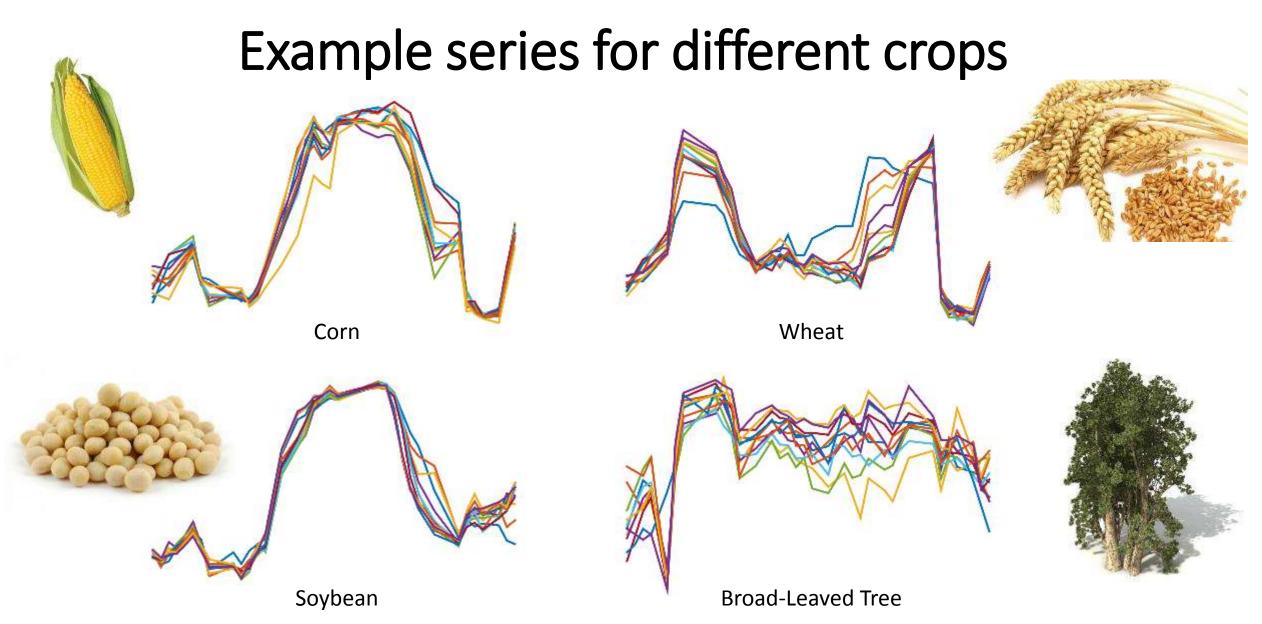
How to do this?

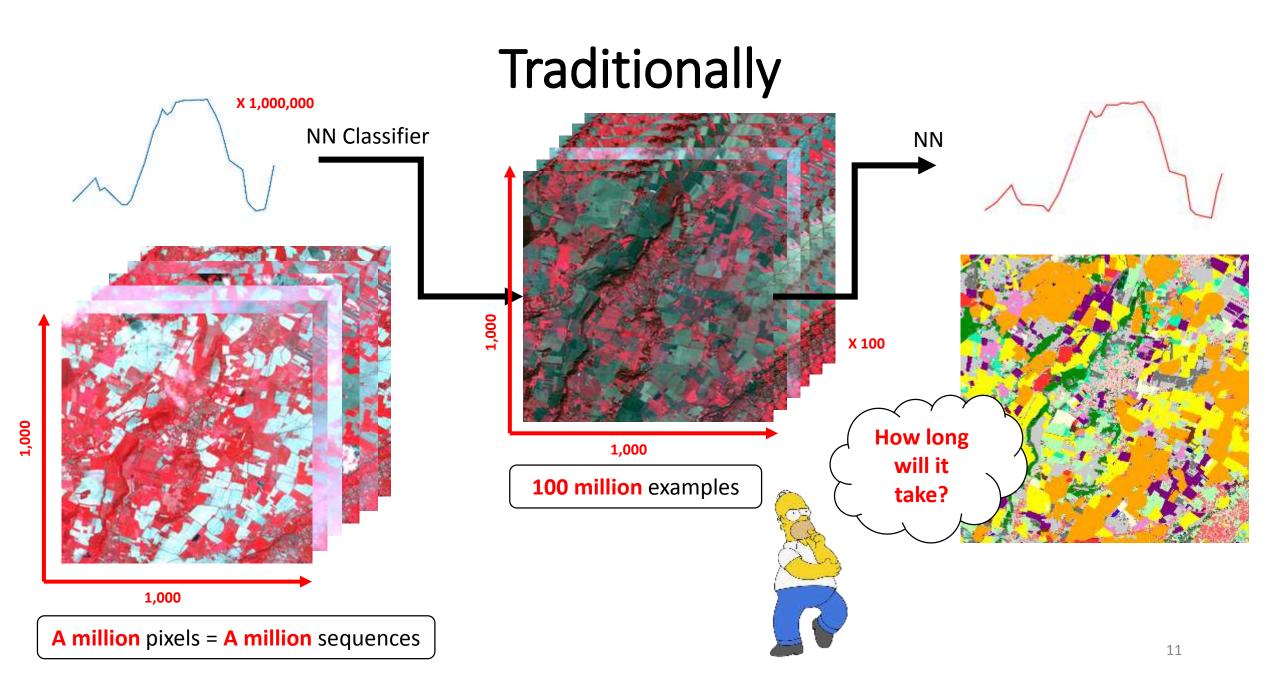
- Time series classification
- State-of-the-art, Nearest Neighbor coupled with Dynamic Time Warping (NN-DTW) [1]
 - Many phenomena of interest vegetation cycles, have periodic behavior which can be modulated by weather artifacts. [2]
 - Too short for the Bag-of-word-type approaches to perform best
 - Length of 46 52
 - Less features in the series
 - BOSS-VS [3] achieved around 40% error rate, NN-DTW achieved 16%

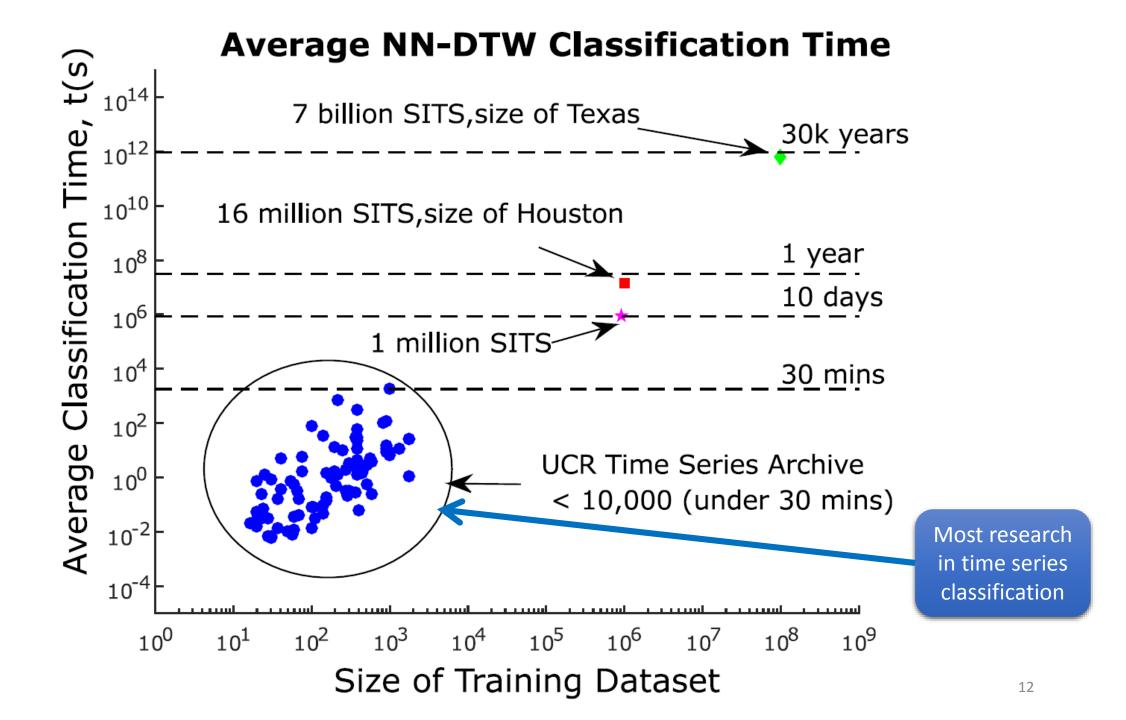
[1] Bagnall, A., & Lines, J. (2014). An experimental evaluation of nearest neighbour time series classification. technical report# CMP-C14-01. *Department of Computing Sciences, University of East Anglia*, Tech. Rep.

[2] Petitjean, F., Inglada, J., & Gançarski, P. (2012). Satellite image time series analysis under time warping. *IEEE Transactions* on Geoscience and Remote Sensing, 50(8), 3081-3095.

[3] Schäfer, P. (2016). Scalable time series classification. *Data Mining and Knowledge Discovery*, 30(5), 1273-1298.



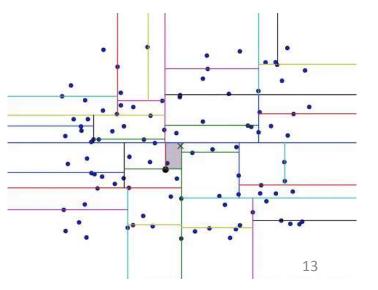




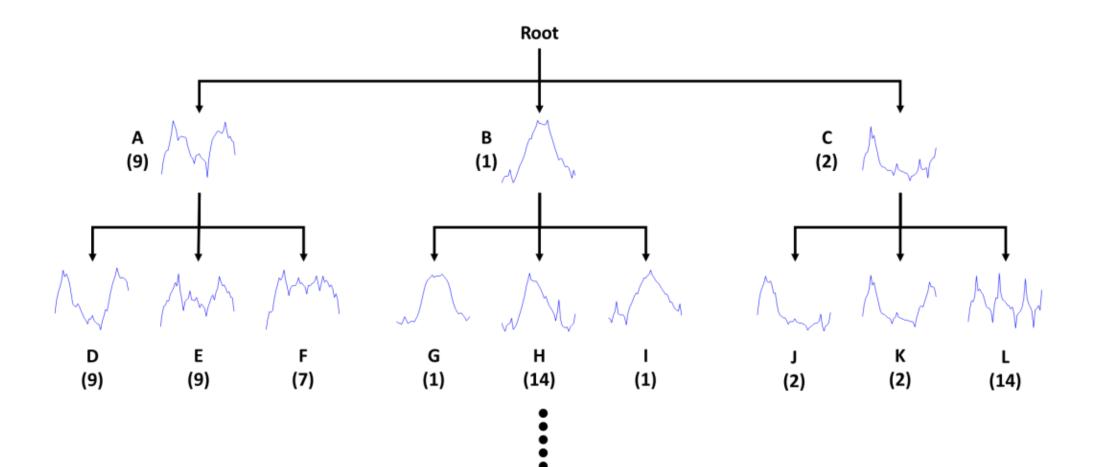
Problem Statement

Anytime Time Series Classification

- Classify a query at any given time with high accuracy
- Without constraints on computational resources at training time
- In Nearest Neighbor classification
 - Find the nearest neighbor much faster than full linear scan
 - Traditional techniques
 - Build an indexing structure in Euclidean Space
 - k-d tree, R tree, LSH ...
 - Does not work with DTW



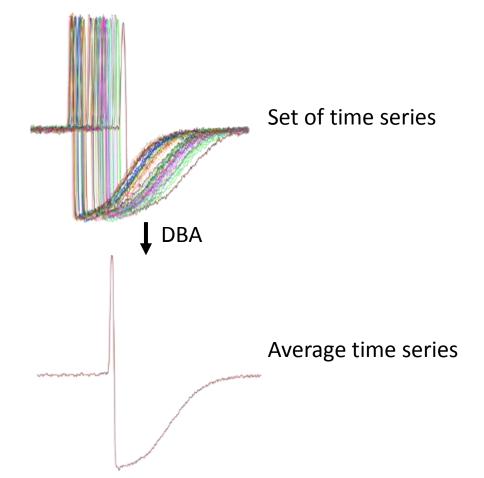
Indexing with Hierarchical Clusters



14

Time Series Indexing

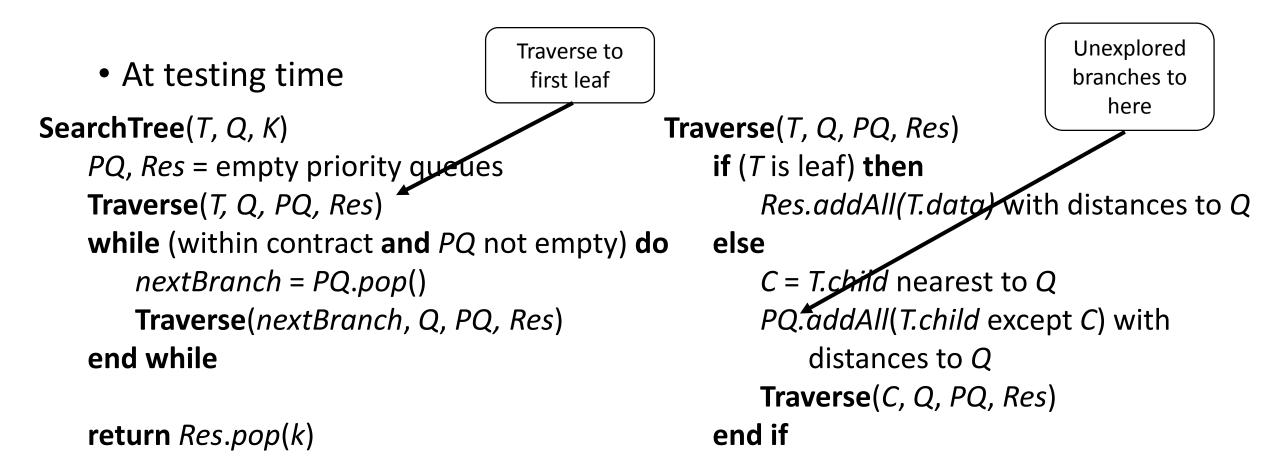
- Hierarchical K-means indexing structure
 - Uses a priority search to speedup the process [1]
- Leverage off a recent work on DTW averaging
 - DTW Barycenter Averaging (DBA) [2, 3]
 - [2] shows that K-means and DBA allows faster and more accurate classification

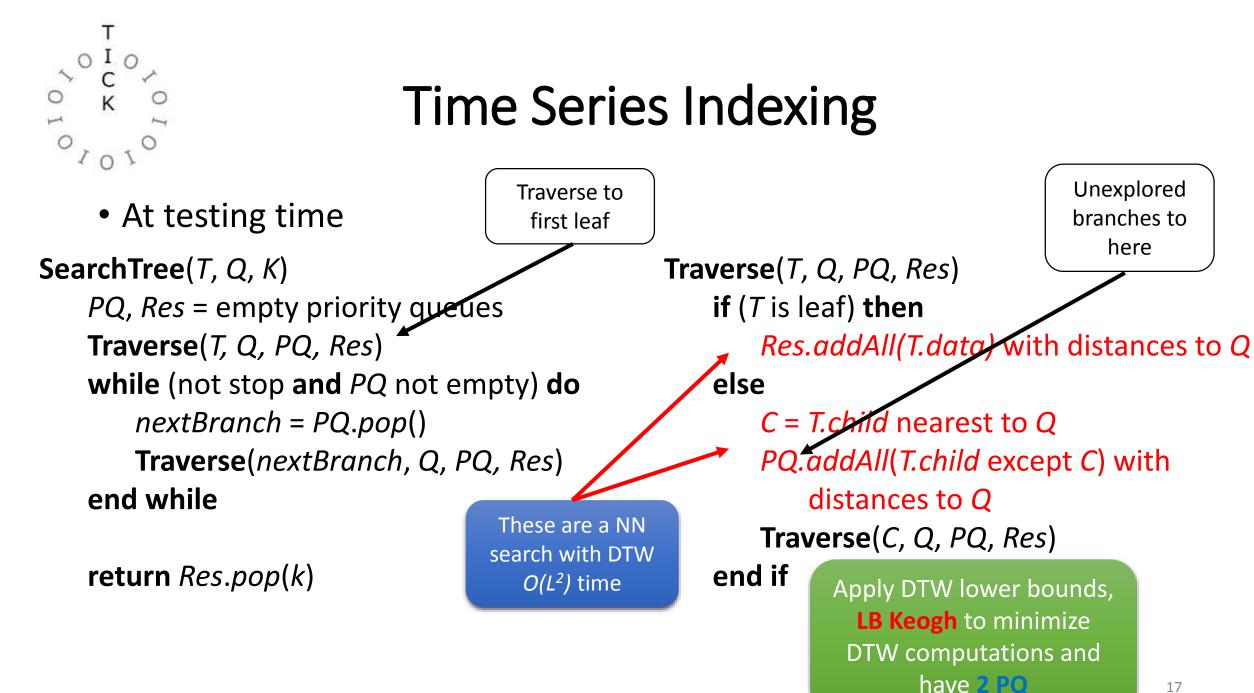


Muja, M., & Lowe, D. G. (2014). Scalable nearest neighbor algorithms for high dimensional data. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 36(11), 2227-2240.
 Petitjean, F., Forestier, G., Webb, G. I., Nicholson, A. E., Chen, Y., & Keogh, E. (2014, December). Dynamic time warping averaging of time series allows faster and more accurate classification. In *Data Mining (ICDM), 2014 IEEE International Conference on* (pp. 470-479). IEEE.

[3] Petitjean, F., Ketterlin, A., & Gançarski, P. (2011). A global averaging method for dynamic time warping, with applications to clustering. Pattern Recognition, 44(3), 678-693.

Time Series Indexing



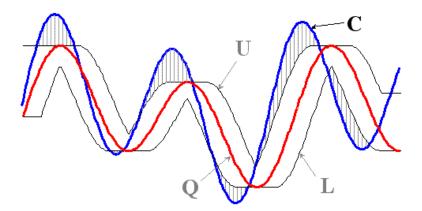


Lower Bound Keogh (LB Keogh)

- 1. Computes Upper (U) and Lower (L) envelope for query Q
- 2. Computes the distance of the projection of a candidate sequence *C* onto the envelope

Only need to compute the envelopes for Q once!!

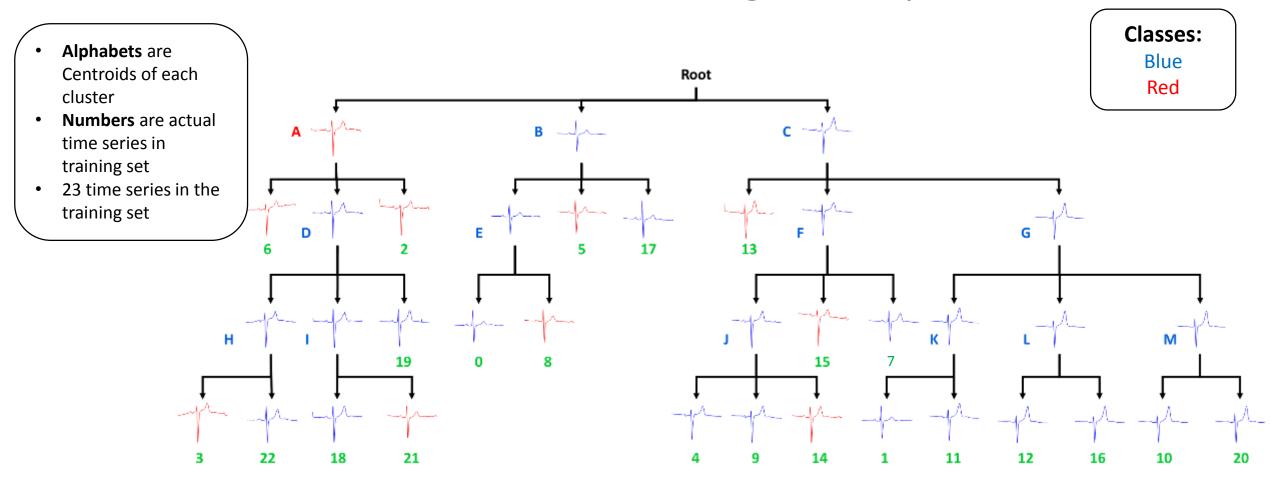
$$LB_Keogh(Q,C) = \sum_{i=1}^{n} \begin{cases} (q_i - U_i)^2 & \text{if } q_i > U_i \\ (q_i - L_i)^2 & \text{if } q_i < L_i \\ 0 & \text{otherwise} \end{cases}$$

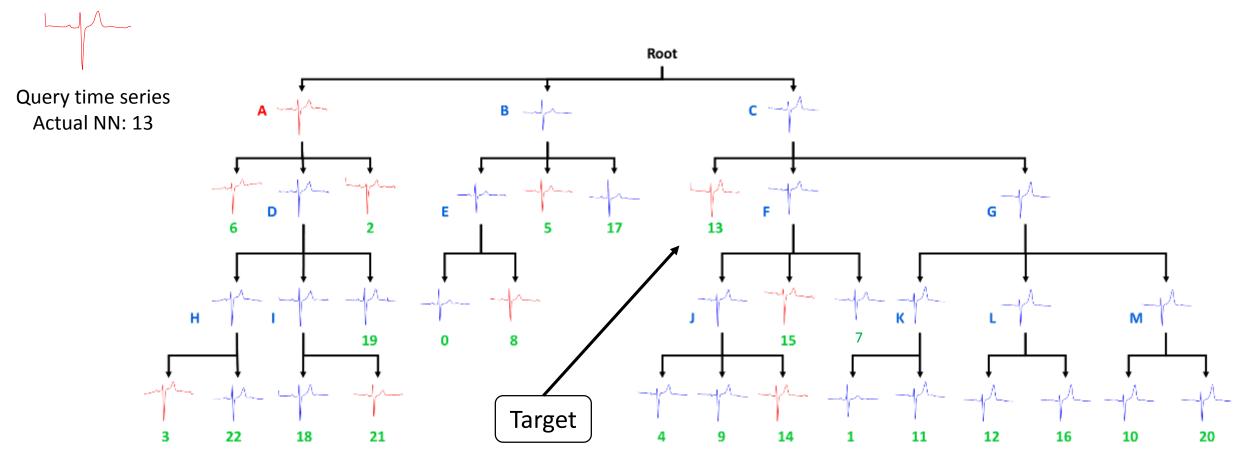


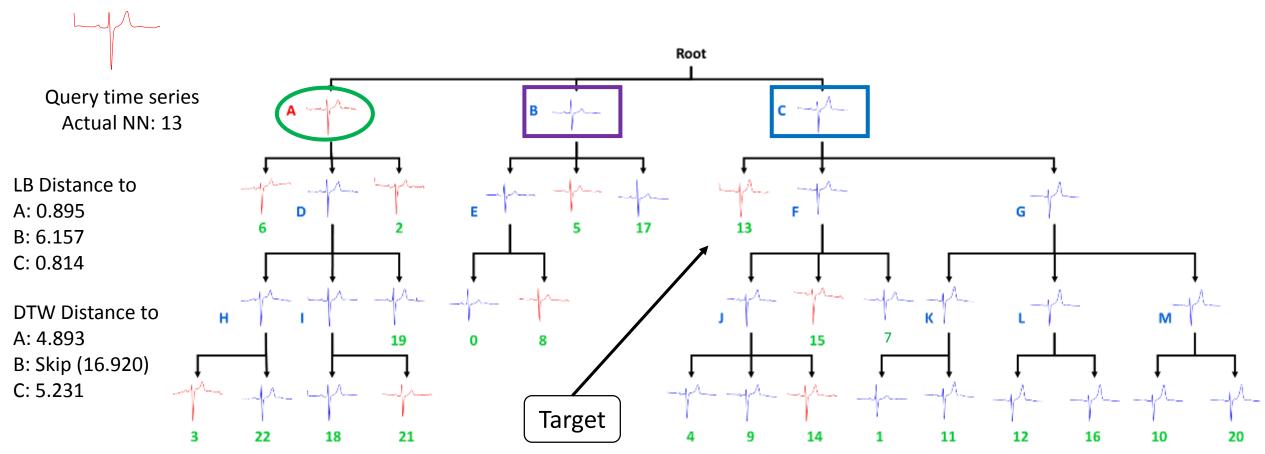
[1] Keogh, E. (2002, August). Exact indexing of dynamic time warping. In *Proceedings of the 28th international conference on Very Large Data Bases* (pp. 406-417). VLDB Endowment.

http://www.cs.ucr.edu/~eamonn/LB_Keogh.htm

Simple example





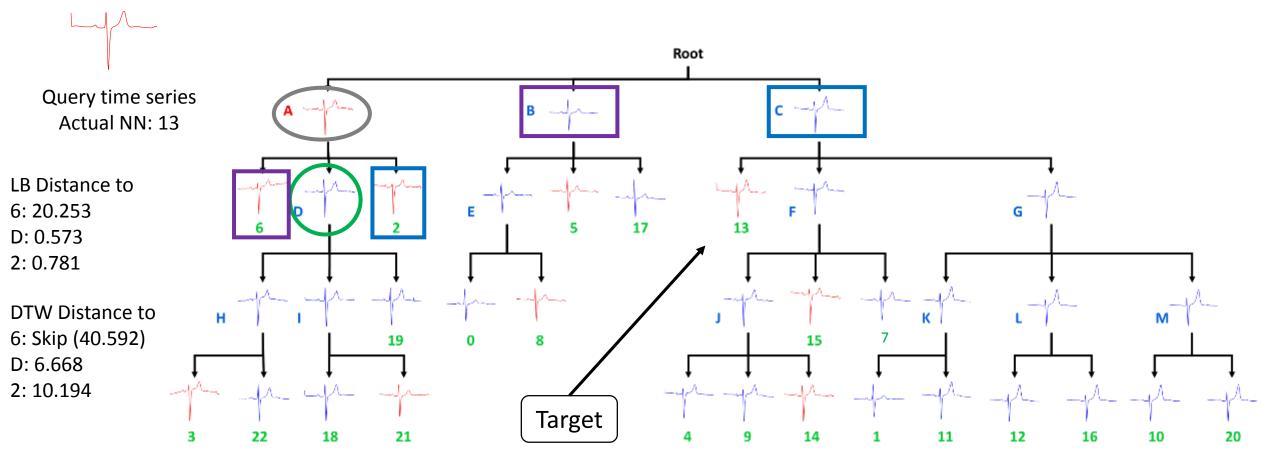


LB Priority Queue		
Priority Queue Distance to Query	:	
DTW Priority Queue	:	
Priority Queue Distance to Query	:	

{B} {6.2}

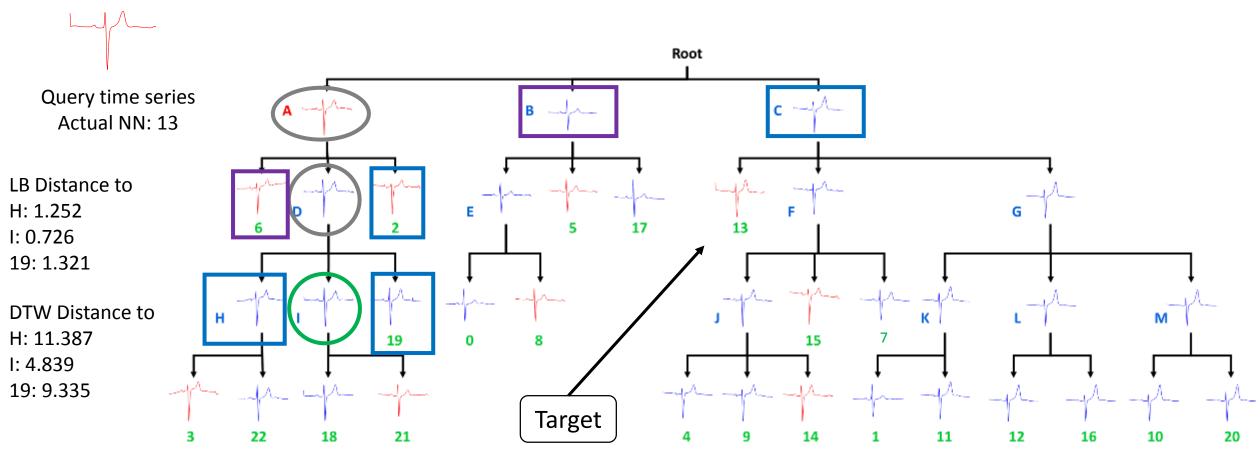
{C}

{5.2}

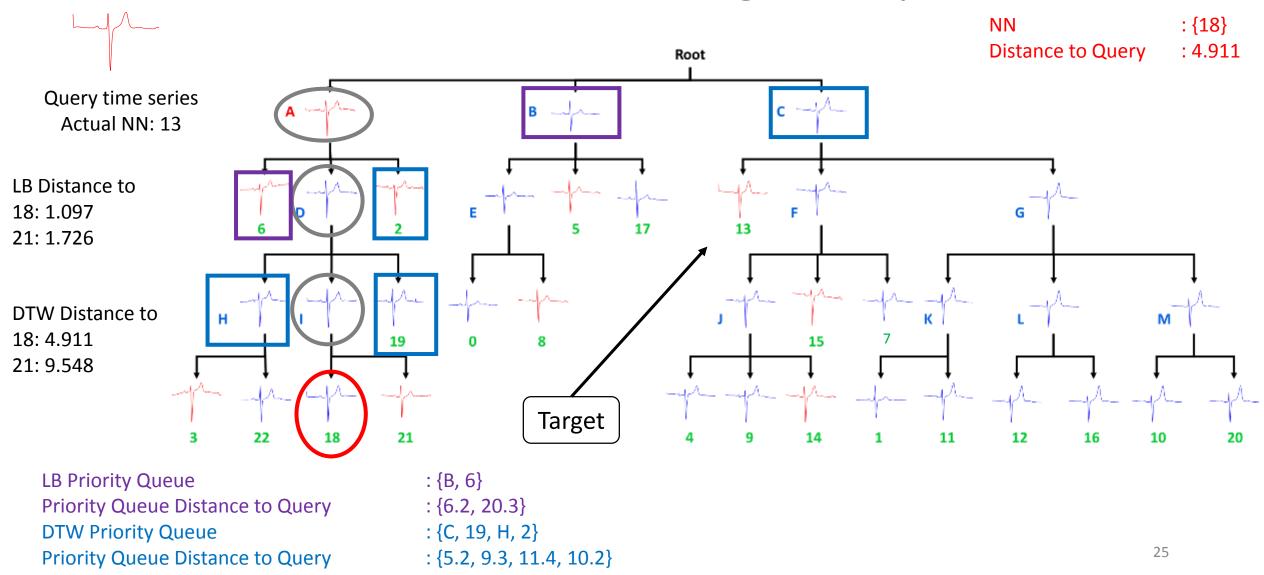


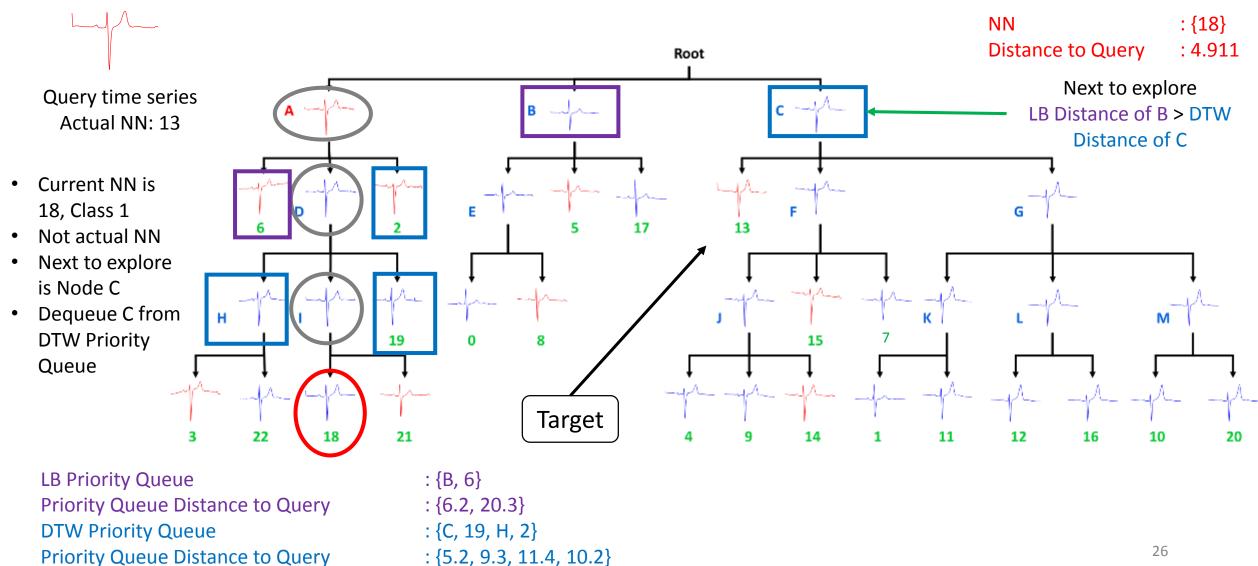
LB Priority Queue Priority Queue Distance to Query DTW Priority Queue Priority Queue Distance to Query : {B, 6} : {6.2, 20.3} : {C, 2} : {5.2, 10.2}

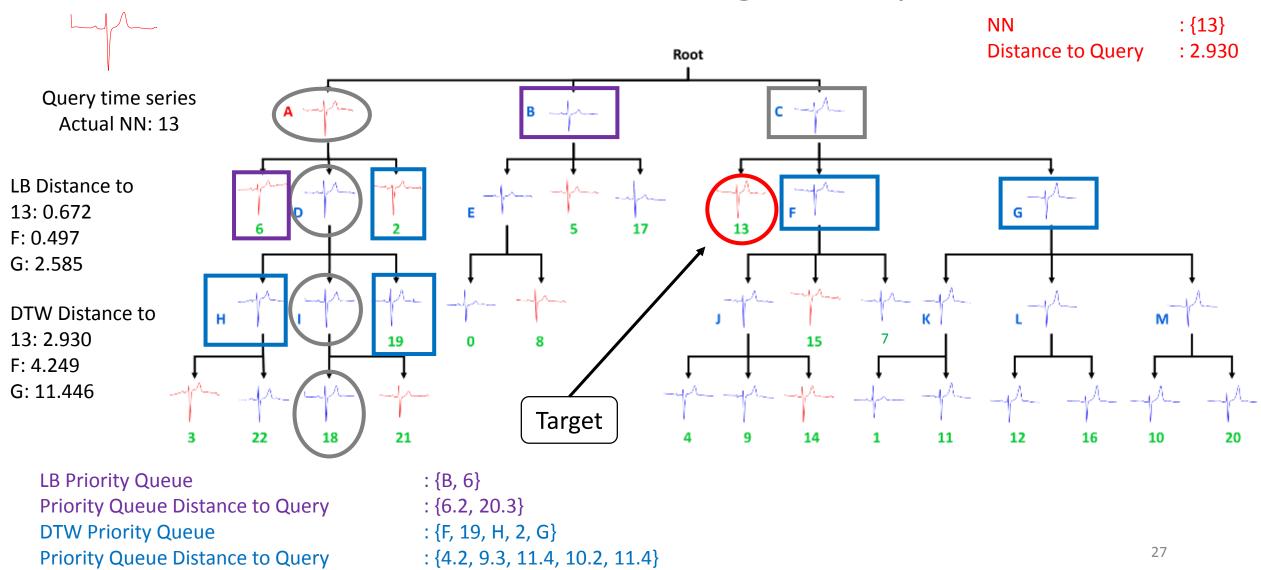
23

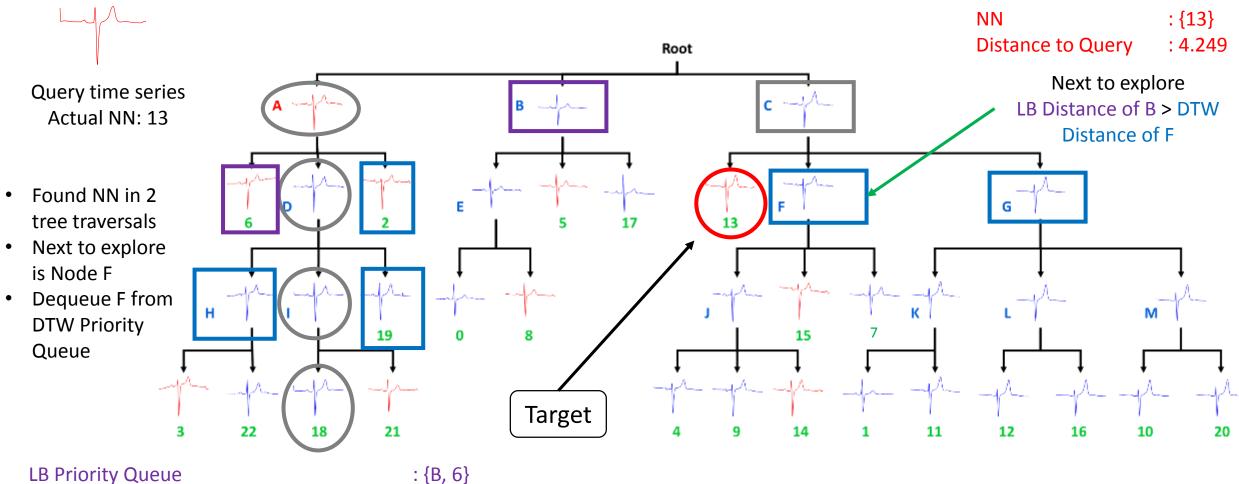


LB Priority Queue Priority Queue Distance to Query DTW Priority Queue Priority Queue Distance to Query : {B, 6} : {6.2, 20.3} : {C, 19, H, 2} : {5.2, 9.3, 11.4, 10.2}







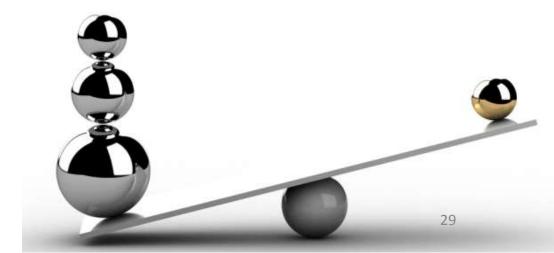


LB Priority Queue Priority Queue Distance to Query DTW Priority Queue Priority Queue Distance to Query

: {6.2, 20.3} : {F, 19, H, 2, G}

: {4.2, 9.3, 11.4, 10.2, 11.4}

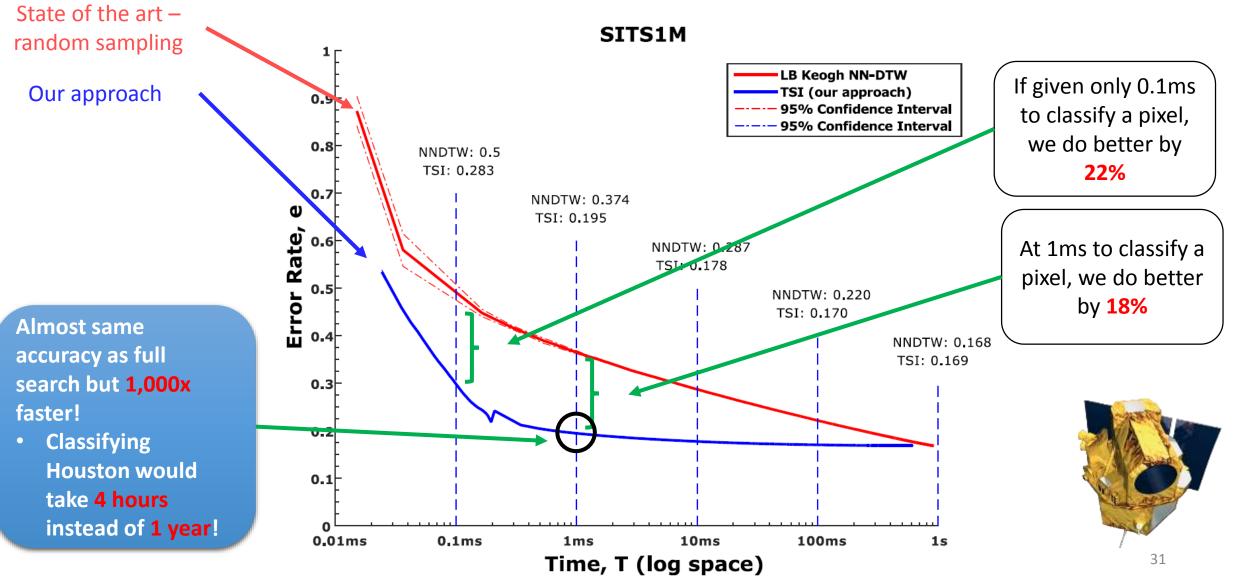
Comparison with state of the art



Experiments

- Compared with NN-DTW with LB_Keogh
 - at x % of the time of the full NN-DTW
 - 1%, 10%, 20%, 30%, 40%, 50%
- Satellite Dataset
 - Train 1M series
 - Length 46
 - Number of classes: 24
- 84 UCR Repository [1]

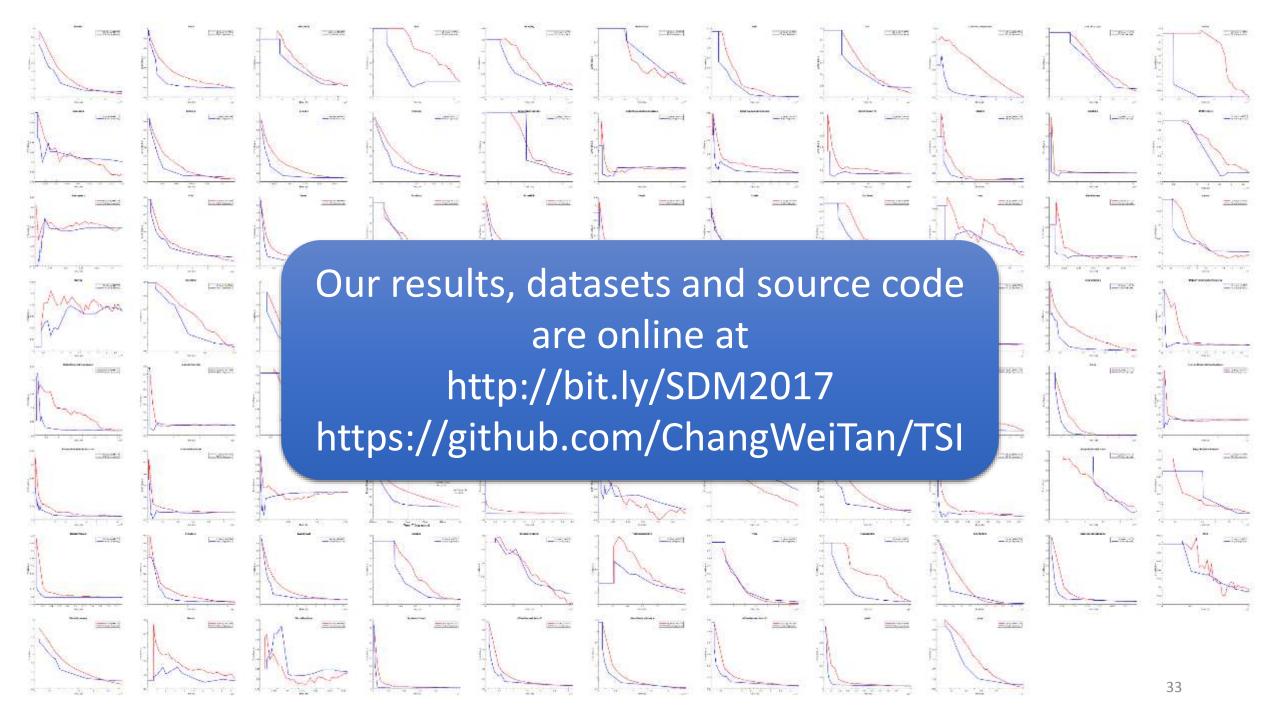
Results on the satellite data



Performance on UCR repository

• Look at how well we perform if we are given **x** % of the time of the full NN-DTW.

LB_Keogh NN-DTW vs TSI							There isn't enough time to see 1 data point for
T . 1	Average 1			Wilcoxon Test Statistics			most of the dataset
Intervals	NN-DTW	TSI	R^+	R^{-}	Z		
1%	1.529	1.471	2034.5	1620.5	-0.907		Statistically
10%	1.841	1.159	3449	206	-7.105		significant
20%	1.871	1.129	3451	204	-7.114		
30%	1.806	1.194	3219.5	435.5	-6.099		
40%	1.741	1.259	2903	752	-4.713		TSI performs better even on smaller
50%	1.671	1.329	2616	1039	-3.455		datasets with
Average	1.743	1.257				£.	average training size
0						3	< 500

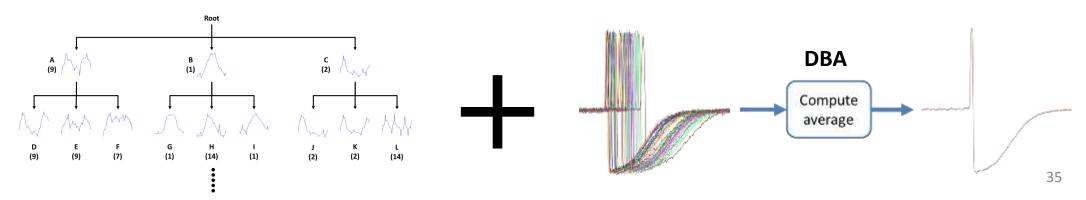


Future Work

- Pruning the whole branch
 - Atomic Wedgie [1]
 - If everything in that branch is of the same class
- Optimizing the branching factor, K
 - Vary K and keep the K value that gives the best trade-off between query time and error rate.
- Speeding up search for the best warping window on large dataset
 - Current method via Cross Validation

Take home message

- 1. The first algorithm (TSI) to index DTW-induced space
 - Hierarchical K-means tree
 - DTW Barycenter Averaging (DBA)
- 2. Twice the accuracy than NN-DTW on large (**1M**) remote sensing data if given 1ms to classify a query
- 3. Perform better even on smaller datasets
 - If we just have 50% of the full search time.



C https

https://github.com/ChangWeiTan/TSI

Thank you! http://bit.ly/SDM2017 Questions and Answers

This material is based upon work supported by the Air Force Office of Scientific Research, Asian Office of Aerospace Research and Development (AOARD) under award number FA2386-16-1-4023. This work was supported by the Australian Research Council under awards DE170100037 and DP140100087, and by the 2016 IBM Faculty Award (F. Petitjean).

Additional Information

Lower Bound for DTW

LinearScan(Q)

```
bestSoFar = infinity
for each sequence S in database
          dtwDist = \mathbf{DTW}(Q, S)
          if (dtwDist < bestSoFar) then</pre>
                bestSoFar = dtwDist
               nn = S
          end if
end for
return nn
```

LowerBoundScan(Q)

```
bestSoFar = infinity
```

for each sequence S in database

lbDist = **LowerBound**(*Q*, *S*) *★* **if** (*lbDist* < *bestSoFar*) **then**

 $dtwDist = \mathbf{DTW}(Q, S)$

if (dtwDist < bestSoFar) then</pre>

bestSoFar = dtwDist

Cheap test before computing the actual DTW distance

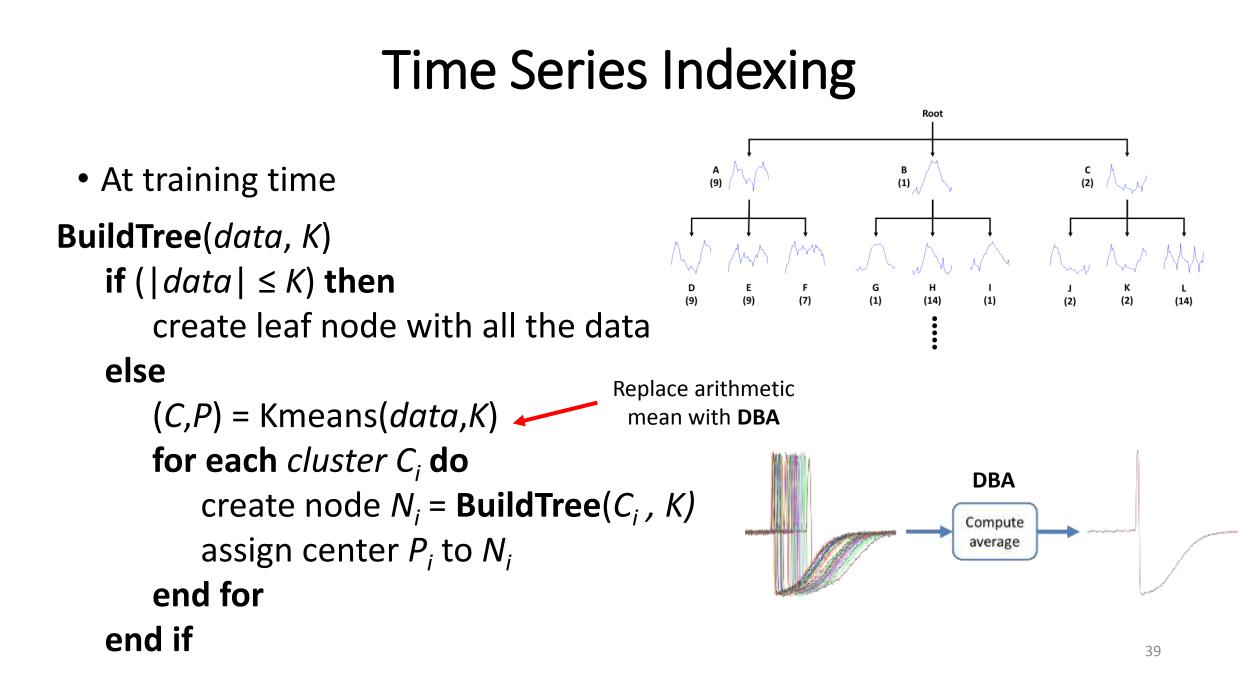
nn = S

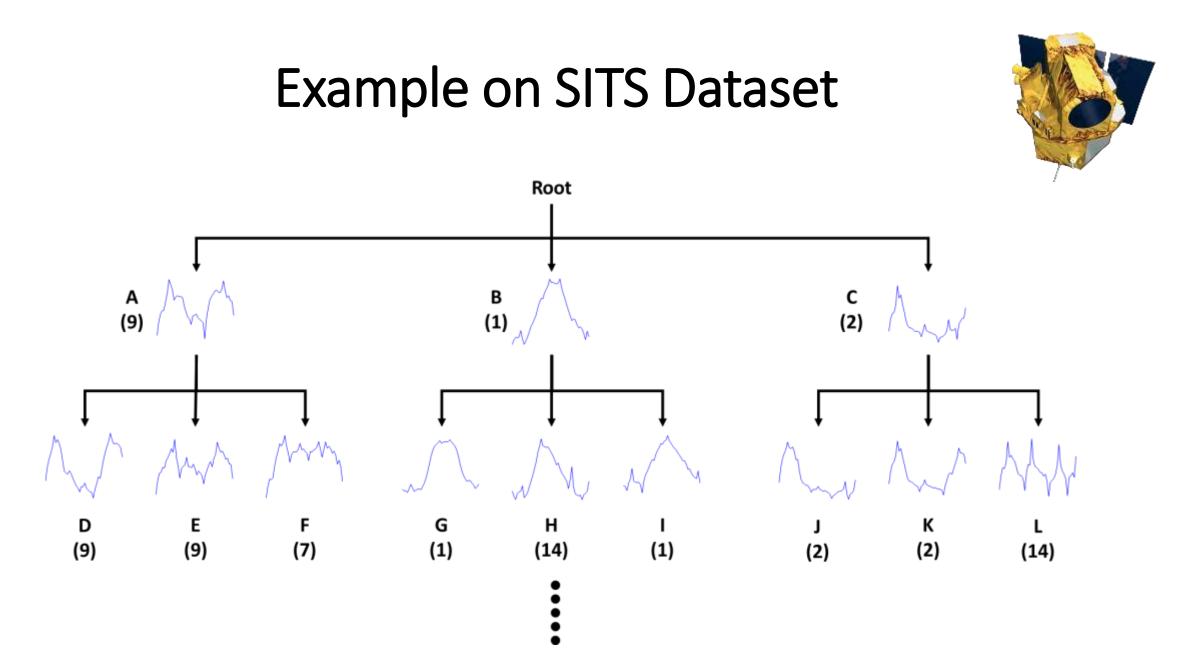
end if

end if

end for

return nn





Example 2

