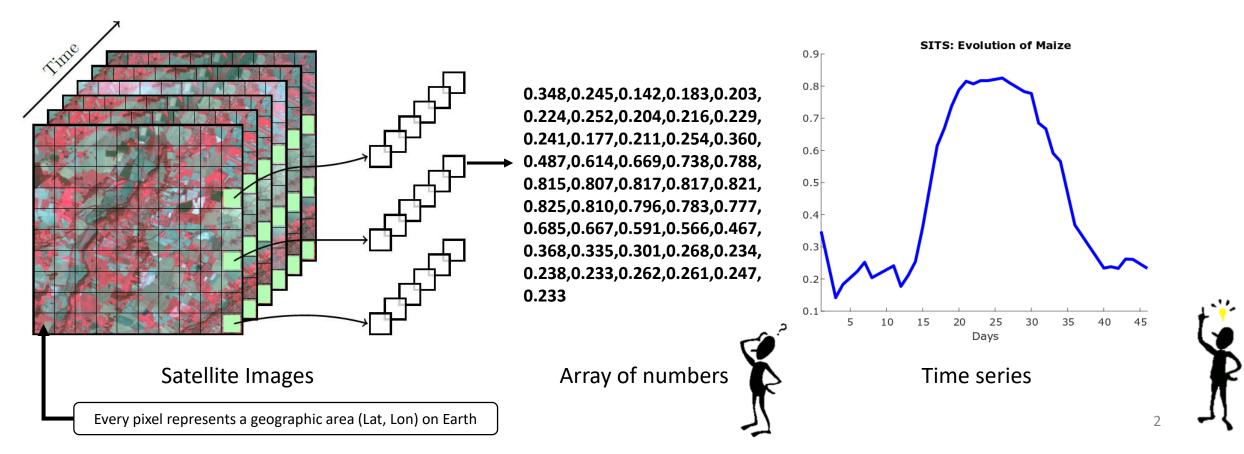
Efficient Search of the Best Warping Window for Dynamic Time Warping

2018 SIAM International Conference on DATA MINING

3 May 2018

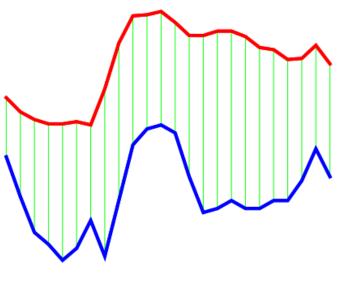
What is a Time Series?

- Collection of observations made sequentially, more intuitive visually
- Many data can be transformed into time series → Satellite Image Time Series

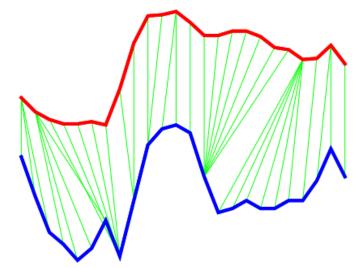


Dynamic Time Warping

- a.k.a. **DTW** similarity function to align time series $O(L^2)$
- Nearest Neighbour Algorithm (NN-DTW) Hard to beat [1]
- Used in many fields: Finance, Engineering, Speech Recognition, ...



Euclidean Distance One-to-one alignment



Dynamic Time Warping Nonlinear alignment

[1] Bagnall, A., Lines, J., Bostrom, A., Large, J., & Keogh, E. (2017). The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Mining and *Knowledge Discovery*, *31*(3), 606-660..

Dynamic Time Warping

- Aligns two time series Q and C using Dynamic Programming
 - Build a cost matrix and solve:

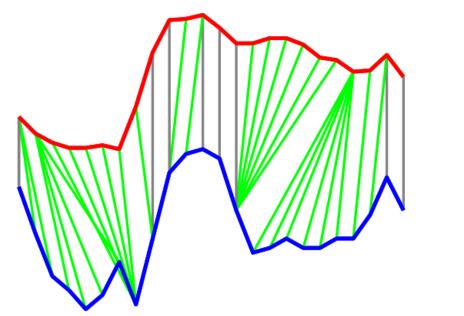
$$D^{Q,C}(i,j) = \delta(q_i, c_j) + \min \begin{cases} D^{Q,C}(i-1,j-1) \\ D^{Q,C}(i-1,j) \\ D^{Q,C}(i,j-1) \end{cases}$$

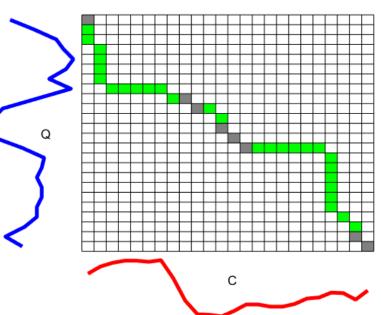
• where
$$\delta(q_i, c_j) = L_p$$
-norm

$$DTW(Q, C) = \left(D^{Q,C}(m, n)\right)^{\frac{1}{p}}$$

Dynamic Time Warping

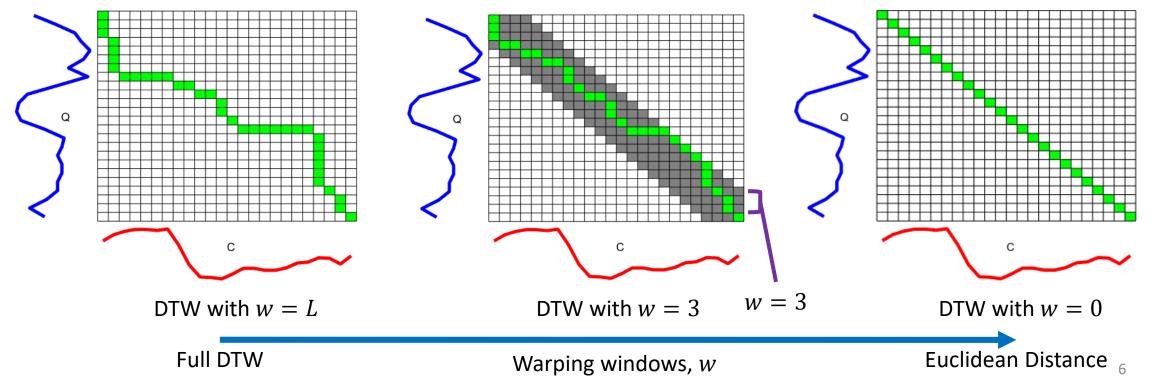
- Every possible alignment of Q and C is a warping path, $\vec{p} = [w_1, \dots, w_K]$
- $w_k = (i, j)$ represents an association of $q_i \leftrightarrow c_j$ aligned by DTW
- DTW(Q, C) finds the cheapest warping path ("best")





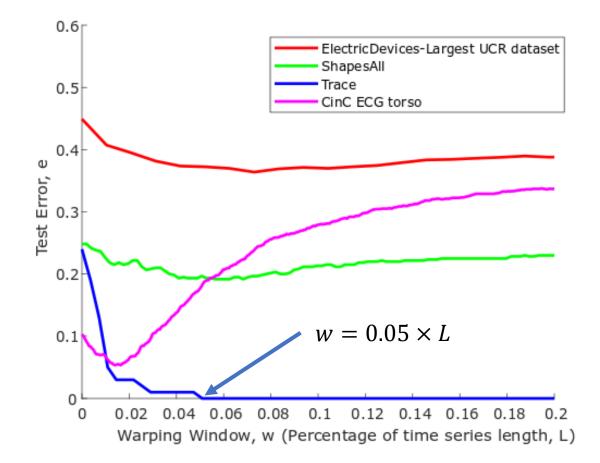
Warping Window

• Warping Window, w is a global constraint on the alignment of DTW such that the elements of Q and C can only be mapped if they are less than w apart, $w = \{0, ..., L\}$



Why learn the best warping window?

- **Strong** influence on accuracy
 - On **CinC ECG torso** dataset, error rate reduced from 35% to 7%
- Outperforms all existing time series classification (TSC) methods
 - State of the art COTE and EE learn the best warping window for DTW
- Speedup DTW
 - Smaller *w* means we don't need to compute the full DTW matrix



7

How to learn the best warping window?

- - if error < bestError then
 bestWW = w
 bestError = error</pre>

Nearest Neighbour – DTW Search

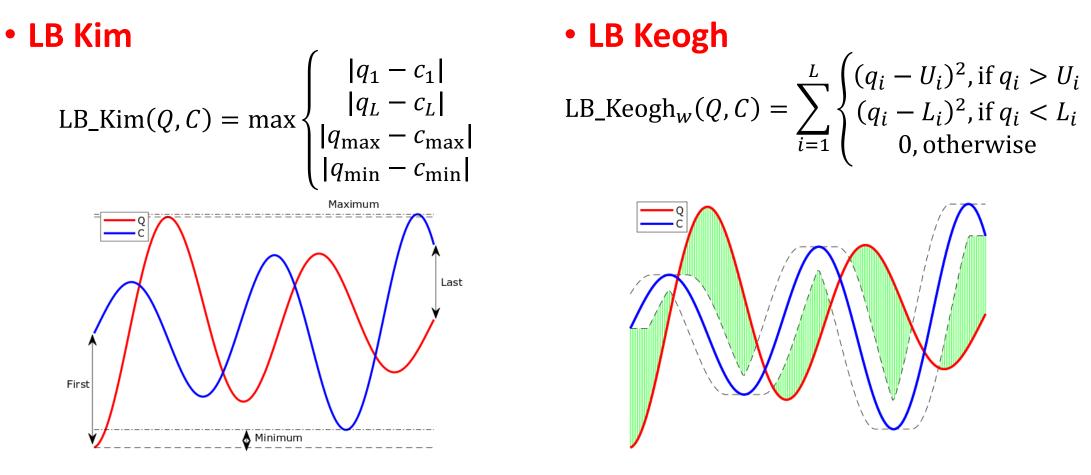
• Naïve DTW Search $bestDist = \infty$ for each c in T do

dtwDist = DTW(q,c,w)
if dtwDist < bestDist then
 bestDist = dtwDist
 nnIndex = c.index</pre>

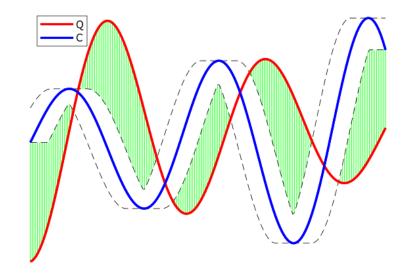
 Lower Bound DTW Search $bestDist = \infty$ LB Kim **LB Keogh** for each c in T do lbDist = lowerBound(q, c, w)if *lbDist* < *bestDist* then dtwDist = DTW(q, c, w)if dtwDist < bestDist then bestDist = dtwDistnnIndex = c.index

 Kim, S. W., Park, S., & Chu, W. W. (2001). An index-based approach for similarity search supporting time warping in large sequence databases. In *Data Engineering, 2001. Proceedings. 17th International Conference on* (pp. 607-614). IEEE.
 Keogh, E., & Ratanamahatana, C. A. (2005). Exact indexing of dynamic time warping. *Knowledge and information systems, 7*(3), 358-386.

DTW Lower Bounds



• LB Keogh

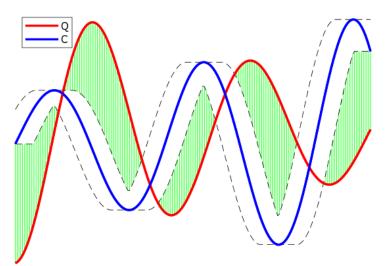


Kim, S. W., Park, S., & Chu, W. W. (2001). An index-based approach for similarity search supporting time warping in large sequence databases. In Data Engineering, 2001. Proceedings. 17th International Conference on (pp. 607-614). IEEE.

Keogh, E., & Ratanamahatana, C. A. (2005). Exact indexing of dynamic time warping. Knowledge and information systems, 7(3), 358-386.

Reversing Query/Candidate in LB Keogh

Envelope on Q LB_Keogh_w(Q,C) Envelope on C LB_Keogh $_w(C,Q)$

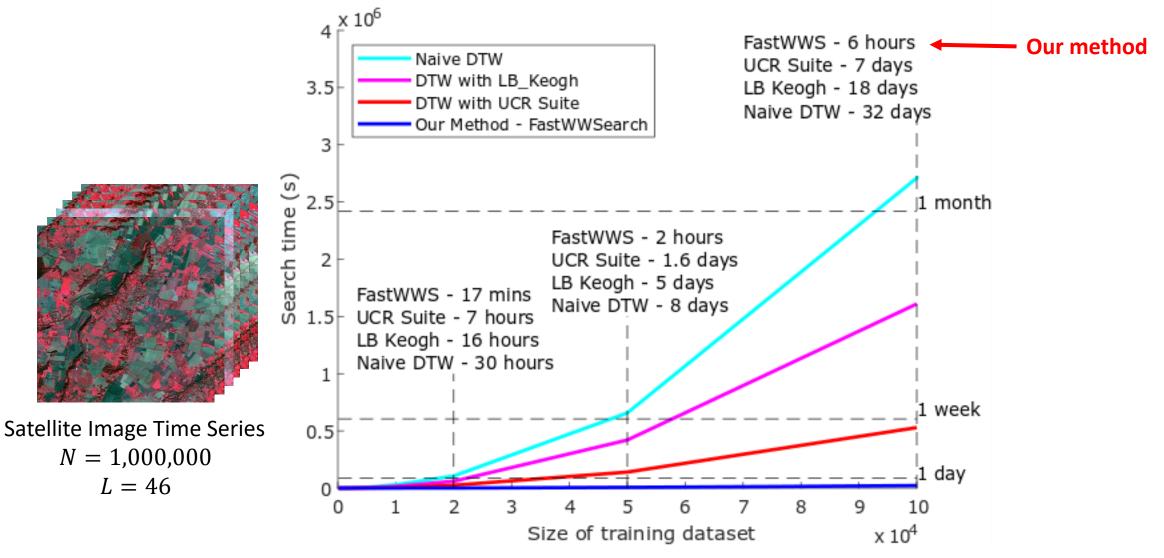


11

- $\max(LB_Keogh_w(Q, C), LB_Keogh_w(C, Q))$
- Increase tightness of LB Keogh
- Envelopes can be pre-computed
- We will show how we utilised all these "tricks" in our algorithm

Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., ... & Keogh, E. (2012, August). Searching and mining trillions of time series subsequences under dynamic time warping. In *Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 262-270). ACM.

Naïve approach learns the best warping window requires $\theta(N^2L^3)$ operations



Efficiently Search for the Best Warping Window of Any Time Series Dataset

Related Methods

• UCR Suite

- Improve efficiency of NN-DTW by minimising DTW computations
- 4 optimisation techniques
 - Early abandoning Z-Normalisation
 - Reordering early abandoning
 - Reversing query and candidate in LB Keogh
 - Cascading lower bounds
- Did not use to learn warping window but can be repurposed for this task

Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., ... & Keogh, E. (2012, August). Searching and mining trillions of time series subsequences under dynamic time warping. In *Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 262-270). ACM.

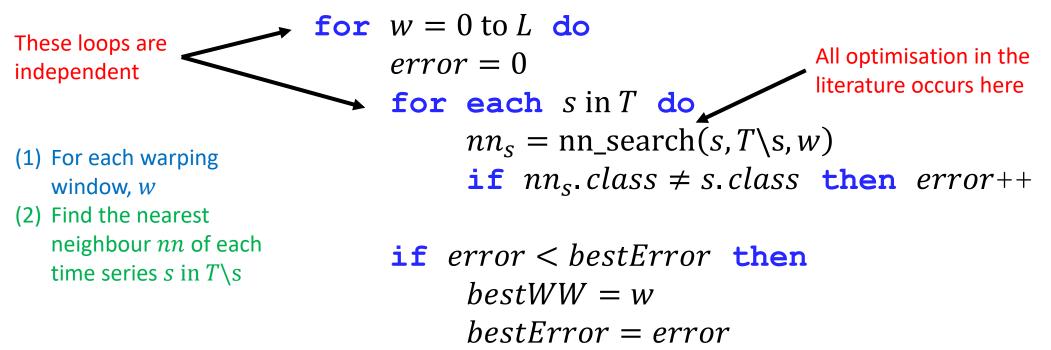
• Pruned DTW

- Improve efficiency of DTW
- Compute an upper bound to minimise the computations by skipping the cells of the cost matrix that are larger
- Uses the DTW value with smaller w as the upper bound to prune DTW with larger w
- Improvement for warping window search is minimal

Silva, D. F., & Batista, G. E. (2016, June). Speeding up all-pairwise dynamic time warping matrix calculation. In *Proceedings of the 2016 SIAM International Conference on Data Mining* (pp. 837-845). Society for Industrial and Applied Mathematics.

Fast Warping Window Search for DTW

- a.k.a. FastWWS An exact method
 - LazyAssessNN
 - FastFillNNTable
- Use links between different values of the loops

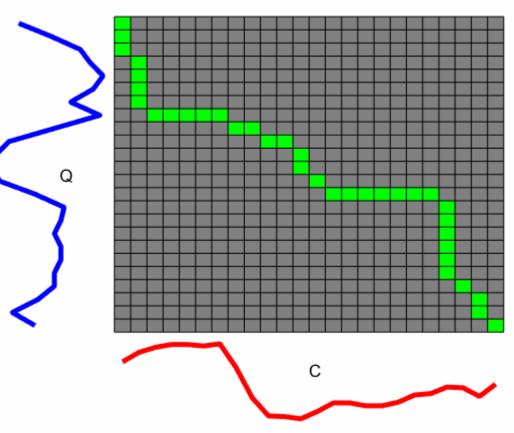


Properties for FastWWS

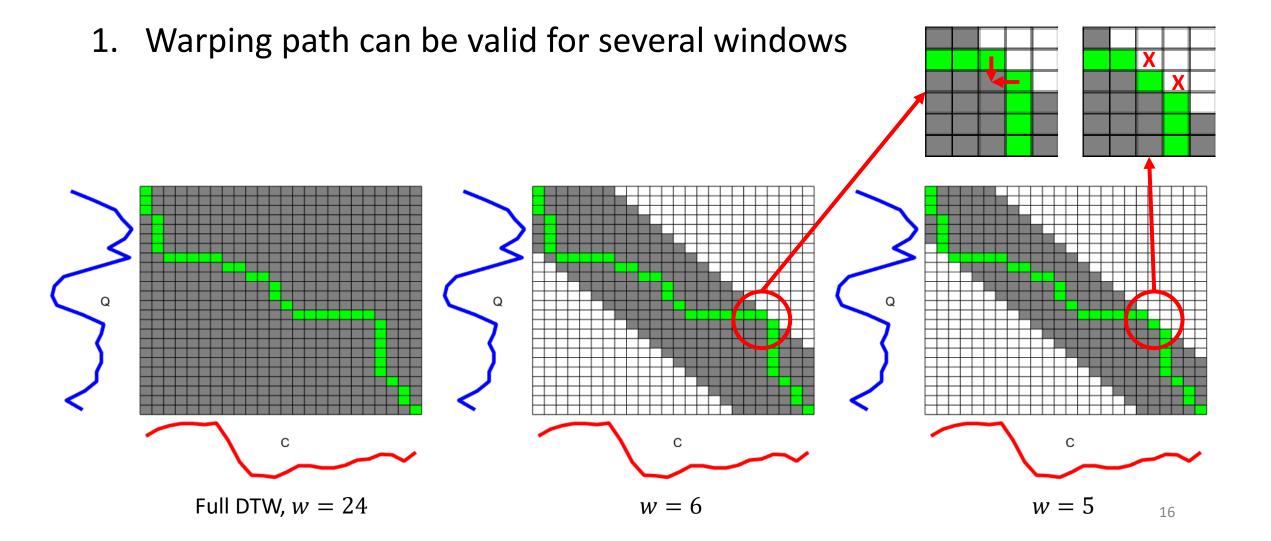
- 1. Warping path can be valid for several windows
 - w has a "validity"
 - skip computations of all valid w
 - Example:
 - Warping path is valid to w = 6
 - $DTW_{24}(Q,C) = DTW_6(Q,C)$
 - Skip all DTW from w = [24, ..., 6]

w	 4	5	6	7	 23	24
$DTW_{\mathbf{w}}(\mathbf{Q},\mathbf{C})$	 8.82	8.36	8.04	8.04	 8.04	8.04

Full DTW, w = 24



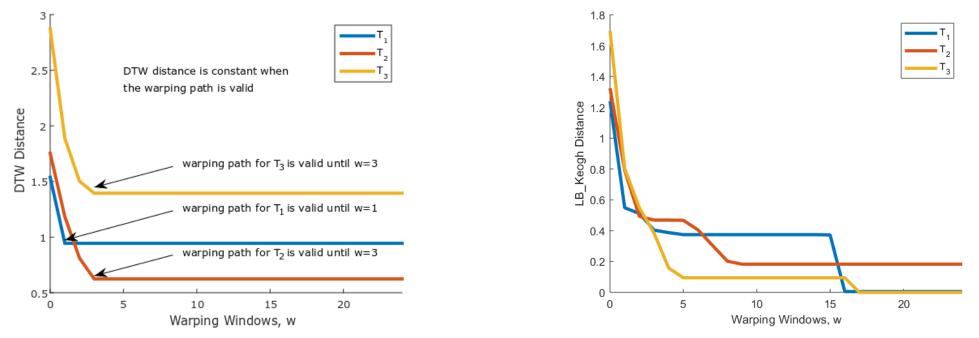
Properties for FastWWS



Properties for FastWWS

- 2. DTW is monotone with warping window
 - $DTW_w(Q, C) \le DTW_{w-1}(Q, C)$

- 3. LB Keogh is monotone with warping window
 - $LB_Keogh_W(Q, C) \le LB_Keogh_{W-1}(Q, C)$



New Lower Bounds to prune Nearest Neighbours before computing $DTW_w(Q, C)$

 $DTW_w(Q,C) \ge DTW_{w+1}(Q,C)$

 $LB_Keogh_w(Q, C) \ge LB_Keogh_{w+1}(Q, C) \ge LB_Kim(Q, C)$

FastWWS Intuition

- Efficiently fill up a NN table, giving the nearest neighbour of every time series for all windows
- Naïvely create the table using DTW, requires $\theta(N^2L^3)$ operations

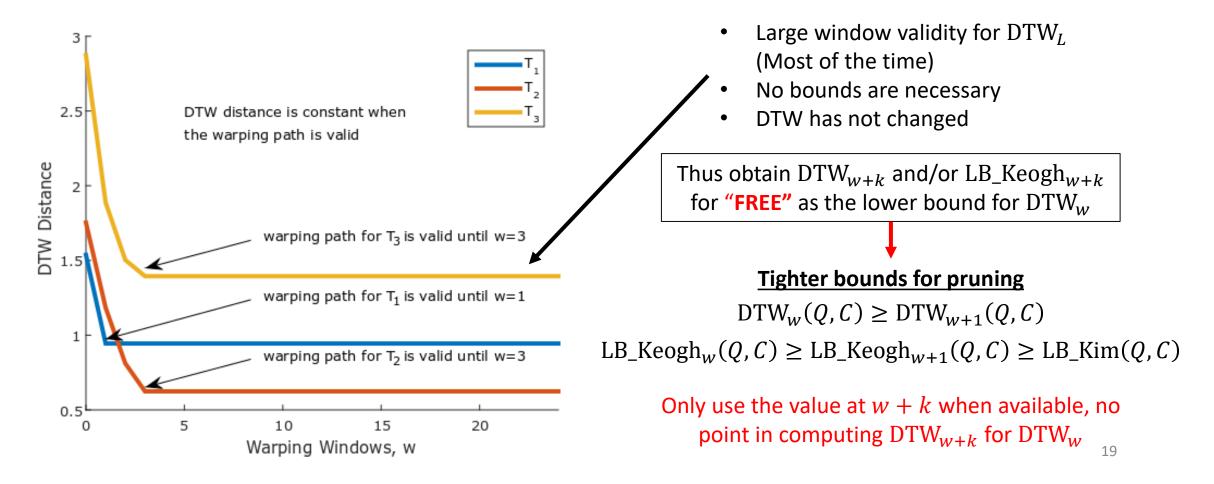
Prior approaches typically go from smallest to largest with a subset of windows

	Nea	rest neighbo	or at w	varping wind	lows
	0	-		L-2	L-1
T_1	$T_{24}(2.57)$	$T_{55}(0.98)$		$T_{55}(0.98)$	$T_{55}(0.98)$
:			:		
T_N	$T_{60}(4.04)$	$T_{47}(1.61)$		$T_{47}(1.61)$	$T_{47}(1.61)$

FastWWS goes from largest to smallest, fast enough to test all windows

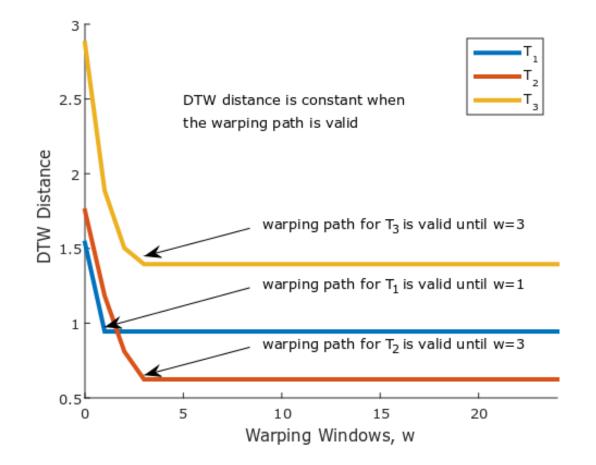
FastWWS Intuition

• FastWWS goes from largest to smallest, applies to all or a subset of windows



FastWWS Intuition

• FastWWS goes from largest to smallest, applies to all or a subset of windows



- 1. If we find the nearest neighbour for a time series at window, w = L and the warping path is valid to w = 0, then we only need to do 1 DTW computation
- 2. When we calculate $DTW_w(Q, C)$, even if candidate *C* is not the nearest neighbour of *Q*, we do not need to recompute $DTW_{w'}(Q, C)$ for all windows *w*' that are valid

Lazy Nearest Neighbour Assessment

- Assess if a pair of time series (Q, C), can be less than distance d for window w
- Postpones calculations for as long as possible
 1. First prune with lower bounds from larger window
 2. Try lower bounds of increasing complexity until
 LB Kim
 - a. $A LB_w(Q, C) > d$
 - b. Calculated $DTW_w(Q, C)$
- When w decreases, any value previously calculated for a larger window becomes a lower bound for current w, stored in a Cache, $\mathcal{C}_{(Q,C)}$

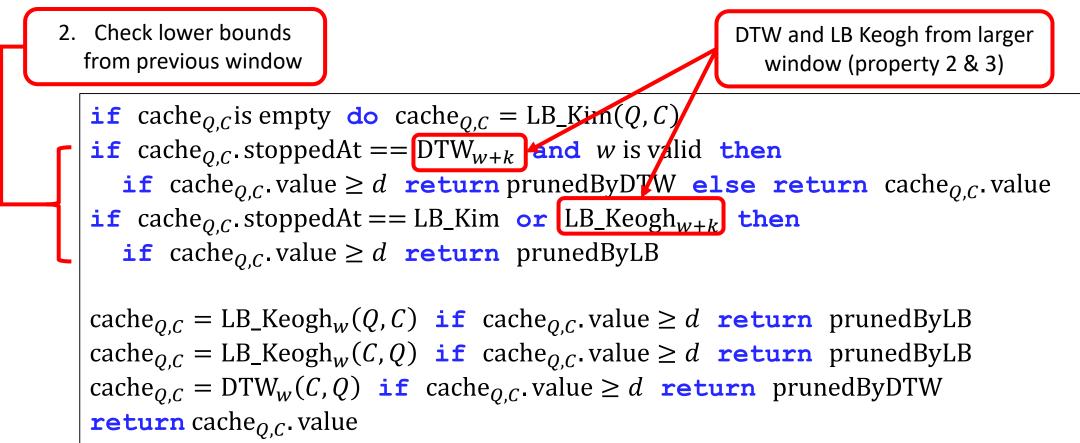
LB Keogh

LazyAssessNN Algorithm

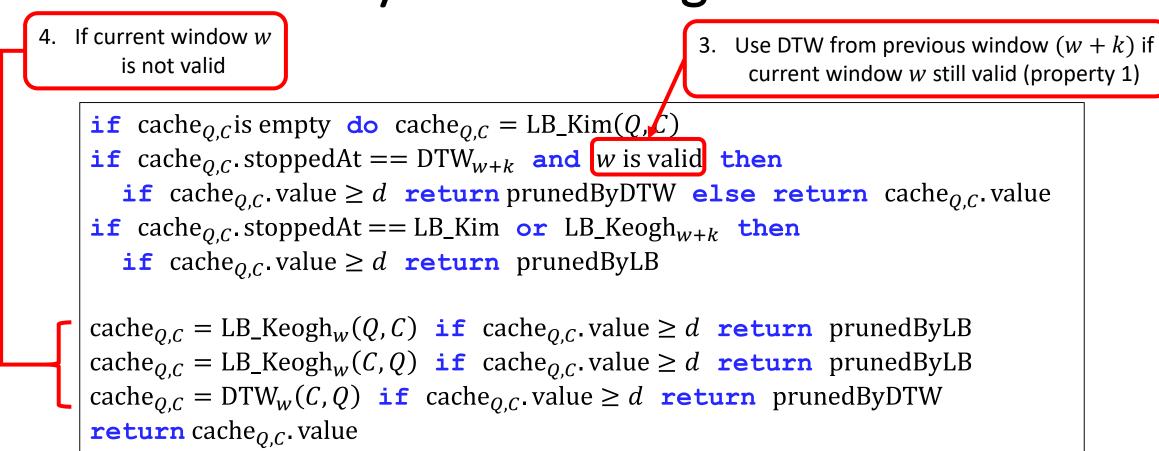
if cache_{Q,C} is empty do cache_{Q,C} = LB_Kim(Q,C) if cache_{0.C}.stoppedAt == DTW_{w+k} and w is valid then if cache_{0,C}.value $\geq d$ return prunedByDTW else return cache_{0,C}.value if cache_{0.C}.stoppedAt == LB_Kim or LB_Keogh_{w+k} then if cache_{0.C}.value $\geq d$ return prunedByLB $\operatorname{cache}_{O,C} = \operatorname{LB}_{\operatorname{Keogh}_{W}}(Q,C)$ if $\operatorname{cache}_{O,C}$.value $\geq d$ return prunedByLB $cache_{O,C} = LB_Keogh_w(C,Q)$ if $cache_{O,C}$.value $\geq d$ return prunedByLB $cache_{O,C} = DTW_w(C,Q)$ if $cache_{O,C}$ value $\geq d$ return prunedByDTW **return** cache_{0.C}. value

1. First do LB Kim if hasn't been done

LazyAssessNN Algorithm



LazyAssessNN Algorithm



- Next call to LazyAssessNN will be with a smaller w
- Possible to use Early Abandon on LB_Keogh and LB_Improved [1]

Fast Fill the Nearest Neighbour Table

for $s \leftarrow 2$ to N do \leftarrow Start with second series for $w \leftarrow L - 1$ down to 0 do \leftarrow Start from largest window if $NN_w^{T_s} \neq \emptyset$ then \leftarrow a. Check if NN for T_s exist at this window for $t \leftarrow 1$ to s - 1 do \leftarrow a. Update NN for all previous series res = LazyAssessNN $(T_s, T_t, w, NN_w^{T_s})$ if res not pruned then $NN_w^{T_s} = (T_t, res)$ else for $t \leftarrow 1$ to s - 1 do \rightarrow res = LazyAssessNN $(T_s, T_t, w, NN_w^{T_s})$ if res not pruned then $NN_w^{T_s} = (T_t, res)$ \longrightarrow res = LazyAssessNN $(T_s, T_t, w, NN_w^{T_t})$ if res not pruned then $NN_w^{T_t} = (T_s, res)$ for $w' \in NN_w^{T_s}$ valid do $NN_{w'}^{T_s} = NN_w^{T_s}$ \leftarrow d. Propagate NN for all valid windows

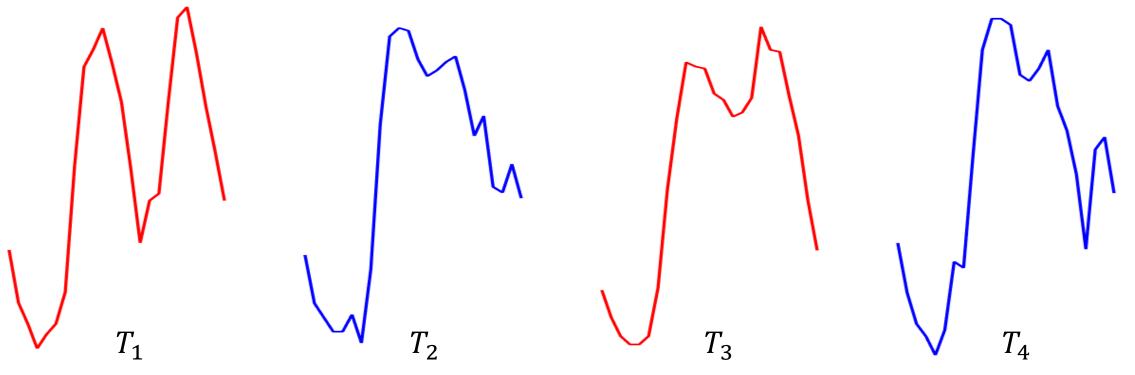
- b. Find NN for current series

- c. Check if current series T_s is NN for previous series

Fast Fill the Nearest Neighbour Table

- Build table for a subset $T' \subseteq T$ of increasing size until T' = T
- 1. Start with 2 time series $T' = \{T_1, T_2\}$ and fill the table as if T' is the entire dataset, starting from w = L 1 to w = 0
 - T_2 is the nearest neighbour of T_1 and vice versa
- 2. Add a third time series T_3 from $T \setminus T'$ to T', $T' = \{T_1, T_2, T_3\}$
 - a. Check if nearest neighbour exists for T_3
 - b. Find the nearest neighbour of T_3 within $T' \setminus T_3 = \{T_1, T_2\}$
 - c. Check if T_3 is the nearest neighbour of T_1 and/or T_2
 - d. Propagate nearest neighbour of T_3 for all valid windows
- 3. Repeat step 2 with the next time series, T_n in $T \setminus T'$ until T' = T

- Let T be a training dataset of 4 time series, $T = \{T_1, T_2, T_3, T_4\}$
- Length of each time series is L = 24



r_2 , Canulate. r_2
e $< \infty \text{ continue}$ $< \infty \text{ continue}$ $5, 4.254 \} < \infty \text{ re}$
ice versa for T_1 to 5



28

FastWWS Example

Reference: $NN_w^{T_S}$ (window validity, d_{NN})

w	0	1	2	3	4	5	•••	22	23
T_1	∞	∞	∞	∞	∞	∞	•••	∞	<i>T</i> ₂ (5, 4.254)
<i>T</i> ₂	8	8	8	8	8	<i>T</i> ₁ (5, 4.254)	•••	<i>T</i> ₁ (5, 4.254)	<i>T</i> ₁ (5, 4.254)

1. Initialise **Cache & NN Table** with ∞ NN distance, NN.fillAll(_, ∞) $\forall \{w, N\}$

- 2. Start with $T' = \{T_1, T_2\}, w = 23, d_{NN} = \infty$ and Query: T_2 , Candidate: T_1
 - LazyAssessNN $(T_1, T_2, 23, \infty)$:

Cache

 $cache_{T_1,T_2}$

StoppedAt

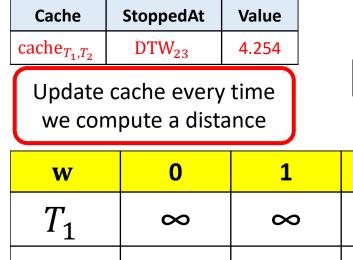
LB Kim

Precompute LB Kim

Value

0.040

- cache_{*T*₁,*T*₂} = LB_Kim(*T*₁,*T*₂) = $0.040 < \infty$ continue
- Compute cache_{T_1,T_2} = LB_Keogh₂₃(T_1,T_2) = 0.000 < ∞ continue
- Compute cache_{T_1,T_2} = LB_Keogh₂₃(T_2,T_1) = 0.046 < ∞ continue
- Compute cache_{T_1,T_2} = DTW₂₃(T_1,T_2) = {validTill = 5, 4.254} < ∞ **return** cache_{T_1,T_2}. value
- Assign T_1 as the Nearest Neighbour for T_2 at w = 23 and vice versa for T_1
- Propagate Nearest Neighbour of T_2 at w = 23 for w = 22 to 5



Reference: $NN_{w}^{T_{s}}$ (window validity, d_{NN})

w	0	1	2	3	4	5	•••	22	23
T_1	∞	8	8	∞	8	<i>T</i> ₂ (5, 4.254)		<i>T</i> ₂ (5, 4.254)	<i>T</i> ₂ (5, 4.254)
<i>T</i> ₂	∞	∞	8	∞	∞	<i>T</i> ₁ (5, 4.254)	•••	T ₁ (5, 4.254)	<i>T</i> ₁ (5, 4.254)

- 3. Continue with w = 22, $d_{NN} = 4.254$ and Query: T_2 , Candidate: T_1
 - Since we have NN for T_2 at w = 22, we have to check if T_2 is NN of T_1
 - LazyAssessNN($T_1, T_2, 22, \infty$):
 - cache_{T_1,T_2}. stoppedAt == DTW₂₃ and w = 22 is valid
 - cache_{T_1,T_2}. value = 4.254 < ∞ return cache_{T_1,T_2}. value
 - Assign T_2 as the Nearest Neighbour for T_1 at w = 22
- 4. Repeat step 3 for all windows, $w \in \{21, ..., 5\}$

w = 22 is still valid $\therefore DTW_{22}(T_1, T_2)$ $= DTW_{23}(T_1, T_2)$ = 4.254

Cache	StoppedAt	Value
$cache_{T_1,T_2}$	DTW ₅	4.254

Reference: $NN_{w}^{T_{s}}$ (window validity, d_{NN})

w	0	1	2	3	4	5	•••	22	23
T_1	<i>T</i> ₂ (0, 11.89)	<i>T</i> ₂ (1, 8.972)	<i>T</i> ₂ (2, 7.341)	<i>T</i> ₂ (3, 6.243)	<i>T</i> ₂ (4, 4.814)	T ₂ (5, 4.254)	•••	T ₂ (5, 4.254)	T ₂ (5, 4.254)
<i>T</i> ₂	<i>T</i> ₁ (0, 11.89)	<i>T</i> ₁ (1, 8.972)	<i>T</i> ₁ (2, 7.341)	<i>T</i> ₁ (3, 6.243)	<i>T</i> ₁ (4, 4.814)	<i>T</i> ₁ (5, 4.254)		<i>T</i> ₁ (5, 4.254)	<i>T</i> ₁ (5, 4.254)

- 5. Continue with w = 4, $d_{NN} = \infty$ and Query: T_2 , Candidate: T_1
 - **LazyAssessNN** $(T_1, T_2, 4, \infty)$:
 - cache_{T_1,T_2}. stoppedAt == DTW₅ and w = 4 is not valid
 - cache_{T_1,T_2}.value = 4.254 < ∞ continue
 - Compute cache_{T1,T2} = LB_Keogh₄(T₁, T₂) = $0.000 < \infty$ continue
 - Compute cache_{T1,T2} = LB_Keogh₄(T₂, T₁) = $2.076 < \infty$ continue
 - Compute cache_{T_1,T_2} = DTW₄(T_1,T_2) = {validTill = 4, 4.814} < ∞ return cache_{T_1,T_2}. value
 - Assign T_1 as the Nearest Neighbour for T_2 at w = 4 and vice versa for T_1
- 6. Repeat step 5 for all windows, $w \in \{3, ..., 0\}$

w = 4 is not valid, recompute DTW if necessary

Cannot propagate NN as window is only valid for w = 4

Cache	StoppedAt	Value
$cache_{T_1,T_2}$	DTW ₀	11.89
$cache_{T_1,T_3}$	LB_Kim	0.361
$cache_{T_2,T_3}$	LB_Kim	0.317

Reference: $NN_{w}^{T_{s}}$ (window validity, d_{NN})

w	0	1	2	3	4	5	•••	22	23
T_1	<i>T</i> ₂ (0, 11.89)	T ₂ (1, 8.972)	<i>T</i> ₂ (2, 7.341)	T ₂ (3, 6.243)	<i>T</i> ₂ (4, 4.814)	T ₂ (5, 4.254)	•••	T ₂ (5, 4.254)	T ₂ (5, 4.254)
<i>T</i> ₂	<i>T</i> ₁ (0, 11.89)	T ₁ (1, 8.972)	<i>T</i> ₁ (2, 7.341)	<i>T</i> ₁ (3, 6.243)	<i>T</i> ₁ (4, 4.814)	<i>T</i> ₁ (5, 4.254)	•••	<i>T</i> ₁ (5, 4.254)	<i>T</i> ₁ (5, 4.254)
<i>T</i> ₃	8	8	8	8	8	8	•••	8	8

- 7. Add $T_3, T' = \{T_1, T_2, T_3\}$
 - cache_{*T*₁,*T*₃} = LB_Kim(*T*₁,*T*₃) = 0.361 < ∞
 - cache_{T_2,T_3} = LB_Kim(T_2,T_3) = 0.317 < ∞
 - Since LB_Kim(T_2, T_3) < LB_Kim(T_1, T_3), start with (T_2, T_3) pair

When adding a new series, initialise the row to ∞ - meaning no NN candidate yet

Cache	StoppedAt	Value
$cache_{T_1,T_2}$	DTW ₀	11.89
$cache_{T_1,T_3}$	LB_Kim	0.361
$cache_{T_2,T_3}$	LB_Kim	0.317

DTW₂₃(T_2, T_3) = 1.612 < 4.254 Update NN₂₃^{T_2} = T_3

Reference: $NN_{w}^{T_{s}}$ (window validity, d_{NN})

w	0	1	2	3	4	5	•••	22	23
<i>T</i> ₁	<i>T</i> ₂ (0, 11.89)	T ₂ (1, 8.972)	<i>T</i> ₂ (2, 7.341)	<i>T</i> ₂ (3, 6.243)	<i>T</i> ₂ (4, 4.814)	T ₂ (5, 4.254)	•••	<i>T</i> ₂ (5, 4.254)	Г ₂ (5, 4.254)
<i>T</i> ₂	<i>T</i> ₁ (0, 11.89)	<i>T</i> ₁ (1, 8.972)	<i>T</i> ₁ (2, 7.341)	<i>T</i> ₁ (3, 6.243)	<i>T</i> ₁ (4, 4.814)	<i>T</i> ₁ (5, 4.254)	•••	<i>T</i> ₁ (5, 4.254)	▼ <i>T</i> ₃ (4, 1.612)
<i>T</i> ₃	∞	8	8	∞	8	∞	•••	8	<i>T</i> ₂ (4, 1.612)

8. For $T_2, T_3, w = 23, d_{NN} = \infty$ and Query: T_3 , Candidate: T_2

- LazyAssessNN $(T_2, T_3, 23, \infty)$:
 - cache_{*T*₂,*T*₃}.value = $0.317 < \infty$ continue
 - Compute cache_{T₂,T₃} = LB_Keogh₂₃(T₂,T₃) = $0.000 < \infty$ continue
 - Compute cache_{T₂,T₃} = LB_Keogh₂₃(T₂,T₃) = $0.000 < \infty$ continue
 - Compute cache_{T_2,T_3} = DTW₂₃(T_2,T_3) = {validTill = 4, 1.612} < ∞ return cache. value
- Assign T_2 as the Nearest Neighbour for T_3 at w = 23
- Since $DTW_{23}(T_2, T_3) = 1.612 < DTW_{23}(T_1, T_2) = 4.254$, Update T_3 as the Nearest Neighbour for T_2 at w = 23

Nearest Neighbour for T_3 is T_2

Cache	StoppedAt	Value
$cache_{T_1,T_2}$	DTW ₀	11.89
$cache_{T_1,T_3}$	LB_Kim	0.361
$cache_{T_2,T_3}$	DTW ₂₃	1.612

DTW₂₃(T_1 , T_3) = 3.326 < 4.254 Update NN₂₃^{T_1} = T_3

Reference: $NN_{w}^{T_{s}}$ (window validity, d_{NN})

w	0	1	2	3	4	5	•••	22	23
<i>T</i> ₁	<i>T</i> ₂ (0, 11.89)	T ₂ (1, 8.972)	<i>T</i> ₂ (2, 7.341)	<i>T</i> ₂ (3, 6.243)	<i>T</i> ₂ (4, 4.814)	T ₂ (5, 4.254)	•••	<i>T</i> ₂ (5, 4.254)	T ₃ (2, 3.326)
<i>T</i> ₂	<i>T</i> ₁ (0, 11.89)	<i>T</i> ₁ (1, 8.972)	<i>T</i> ₁ (2, 7.341)	<i>T</i> ₁ (3, 6.243)	<i>T</i> ₁ (4, 4.814)	<i>T</i> ₁ (5, 4.254)	•••	<i>T</i> ₁ (5, 4.254)	T ₃ (4, 1.612)
<i>T</i> ₃	∞	8	8	∞	8	8	•••	8	<i>T</i> ₂ (4, 1.612)

9. For $T_1, T_3, d_{NN} = 1.612$, $DTW_{23}(T_1, T_2) = 4.254$ and Query: T_3 , Candidate: T_1

- **LazyAssessNN**(*T*₁, *T*₃, 23, 1.612):
 - cache_{*T*₁,*T*₃}.value = 0.361 < 1.612 continue
 - Compute cache_{T_1,T_3} = LB_Keogh₂₃(T_1,T_3) = 0.000 < 1.612 continue
 - Compute cache_{*T*₁,*T*₃} = LB_Keogh₂₃(*T*₁,*T*₃) = 0.039 < 1.612 continue
 - Compute cache_{T_1,T_3} = DTW₂₃(T_1,T_3) = {validTill = 2, 3.326} ≥ 1.612 **return** prunedByDTW
- No change to Nearest Neighbour for T_3 at w = 23
- Since $DTW_{23}(T_1, T_3) = 3.326 < DTW_{23}(T_1, T_2) = 4.254$, Update T_3 as the Nearest Neighbour for T_1 at w = 23

 $DTW_{23}(T_1, T_3) = 3.326 \ge 1.612$ No change to $NN_{23}^{T_3}$

Cache	StoppedAt	Value
$cache_{T_1,T_2}$	DTW ₀	11.89
$cache_{T_1,T_3}$	DTW ₂₃	3.326
$cache_{T_2,T_3}$	DTW ₂₃	1.612

Reference: $NN_{w}^{T_{s}}$ (window validity, d_{NN})

w	0	1	2	3	4	5	•••	22	23
<i>T</i> ₁	<i>T</i> ₂ (0, 11.89)	T ₂ (1, 8.972)	<i>T</i> ₂ (2, 7.341)	<i>T</i> ₂ (3, 6.243)	T ₃ (2, 3.326)	<i>T</i> ₃ (2, 3.326)	•••	T ₃ (2, 3.326)	T ₃ (2, 3.326)
<i>T</i> ₂	<i>T</i> ₁ (0, 11.89)	T ₁ (1, 8.972)	<i>T</i> ₁ (2, 7.341)	<i>T</i> ₁ (3, 6.243)	<i>T</i> ₃ (4, 1.612)	<i>T</i> ₃ (4, 1.612)	•••	<i>T</i> ₃ (4, 1.612)	T ₃ (4, 1.612)
<i>T</i> ₃	8	8	8	8	<i>T</i> ₂ (4, 1.612)	<i>T</i> ₂ (4, 1.612)	•••	<i>T</i> ₂ (4, 1.612)	<i>T</i> ₂ (4, 1.612)

10. Now we are sure about $NN_{23}^{T_1}$, $NN_{23}^{T_2}$ and $NN_{23}^{T_3}$

- We can update NN for T_1, T_2, T_3 for w = 22 to 4 since $NN_{23}^{T_3}$ is valid until w = 4
- $NN_{23}^{T_1}$ is valid until w = 2 and will be updated later when we move on to w = 2
- Since $DTW_{23}(T_2, T_3) = 1.612 < DTW_{23}(T_1, T_3) = 3.326$, start with (T_2, T_3) pair for w = 3
- $DTW_4(T_1, T_3) = DTW_{23}(T_1, T_3)$
- $DTW_4(T_2, T_3) = DTW_{23}(T_2, T_3)$

Propagate $NN_w^{T_3}$ and update $NN_w^{T_1}$, $NN_w^{T_2}$ across w = 22 to 4

Cache	StoppedAt	Value
$cache_{T_1,T_2}$	DTW ₀	11.89
$cache_{T_1,T_3}$	DTW ₄	3.326
$cache_{T_2,T_3}$	DTW ₄	1.612

Reference: $NN_{w}^{T_{s}}$ (window validity, d_{NN})

w	0	1	2	3	4	5	•••	22	23
T_1	<i>T</i> ₃ (0, 4.911)	<i>T</i> ₃ (1, 3.486)	T ₃ (2, 3.326)	•••	T ₃ (2, 3.326)	T ₃ (2, 3.326)			
T_2	T ₃ (0, 4.395)	T ₃ (1, 2.598)	<i>T</i> ₃ (2, 1.882)	<i>T</i> ₃ (3, 1.614)	<i>T</i> ₃ (4, 1.612)	<i>T</i> ₃ (4, 1.612)	•••	<i>T</i> ₃ (4, 1.612)	T ₃ (4, 1.612)
T_3	<i>T</i> ₂ (0, 4.395)	<i>T</i> ₂ (1, 2.598)	<i>T</i> ₂ (2, 1.882)	T ₂ (3, 1.614)	<i>T</i> ₂ (4, 1.612)	<i>T</i> ₂ (4, 1.612)		<i>T</i> ₂ (4, 1.612)	<i>T</i> ₂ (4, 1.612)

11. For T_2 , T_3 continue with w = 3, $d_{NN} = \infty$ and Query: T_3 , Candidates: T_2

- **LazyAssessNN** $(T_2, T_3, 3, \infty)$:
 - cache_{T₂,T₃}. stoppedAt == DTW_4 and w = 3 is not valid
 - cache_{T_2,T_3} = 1.612 < ∞ continue
 - Compute cache_{T₂,T₃} = LB_Keogh₃(T₂,T₃) = $0.421 < \infty$ continue
 - Compute cache_{T_2,T_3} = LB_Keogh₃(T_3,T_2) = 0.328 < ∞ continue
 - Compute cache_{T_2,T_3} = DTW₃(T_2,T_3) = {validTill = 3, 1.614} < ∞ **return** cache. value
- Assign T_2 as the Nearest Neighbour for T_3 at w = 3
- Since $DTW_3(T_2, T_3) = 1.614 < DTW_3(T_1, T_2) = 6.243$, Update T_3 as the Nearest Neighbour for T_2 at w = 3
- 12. Repeat the algorithm for all windows, $w \in \{2, ..., 0\}$

w = 3 is not valid, recompute DTW if necessary

Reference: $NN_{w}^{T_{s}}$ (window validity, d_{NN})

w	0	1	2	3	4	5	•••	22	23
T_1	T ₃ (0, 4.911)	T ₃ (1, 3.486)	T ₃ (2, 3.326)	•••	T ₃ (2, 3.326)	T ₃ (2, 3.326)			
<i>T</i> ₂	<i>T</i> ₄ (0, 1.658)	<i>T</i> ₄ (1, 0.632)	T ₄ (2, 0.620)	T ₄ (3, 0.599)	T ₄ (3, 0.599)	T ₄ (3, 0.599)	•••	T ₄ (3, 0.599)	T ₄ (3, 0.599)
T_3	T ₂ (0, 4.395)	T ₂ (1, 2.598)	<i>T</i> ₂ (2, 1.882)	<i>T</i> ₂ (3, 1.614)	<i>T</i> ₂ (4, 1.612)	<i>T</i> ₂ (4, 1.612)		<i>T</i> ₂ (4, 1.612)	<i>T</i> ₂ (4, 1.612)
T_4	<i>T</i> ₂ (0, 1.658)	<i>T</i> ₂ (1, 0.632)	<i>T</i> ₂ (2, 0.620)	T ₂ (3, 0.599)	T ₂ (3, 0.599)	T ₂ (3, 0.599)	•••	T ₂ (3, 0.599)	T ₂ (3, 0.599)

13. Continue adding T_4 to T' and repeat previous steps until $T' = T = \{T_1, T_2, T_3, T_4\}$

w	0	1	2	3	4	5	•••	22	23
<i>T</i> ₁	<i>T</i> ₃	T_3	T_3	T_3	<i>T</i> ₃	T_3	•••	T_3	<i>T</i> ₃
<i>T</i> ₂	T_4	T_4	T_4	T_4	T_4	T_4	•••	T_4	T_4
<i>T</i> ₃	<i>T</i> ₂	T_2	T_2	T_2	<i>T</i> ₂	T_2	•••	T_2	<i>T</i> ₂
T_4	<i>T</i> ₂	T_2	T_2	T_2	<i>T</i> ₂	T_2	•••	T_2	<i>T</i> ₂
Acc	0.75	0.75	0.75	0.75	0.75	0.75	•••	0.75	0.75

- 14. Classify every instance for each window in one pass of the table
 - Yields the best window at w = 0 with LOO-CV accuracy of **0.75**

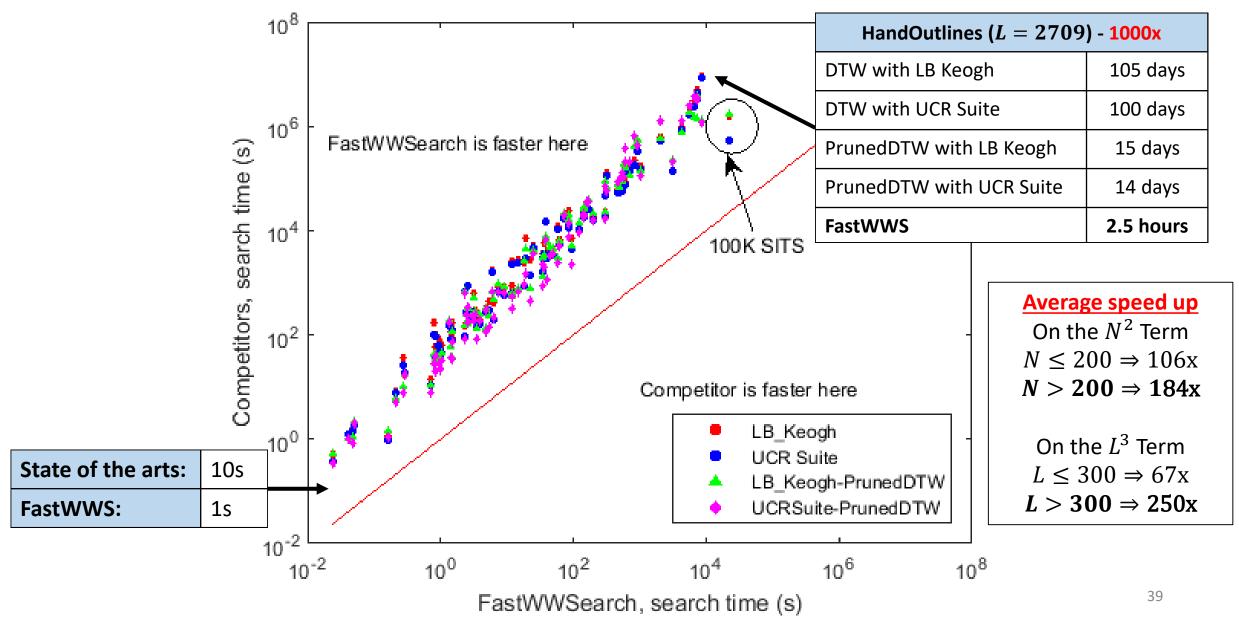
Experimental Evaluation

• Evaluate the efficiency of FastWWS

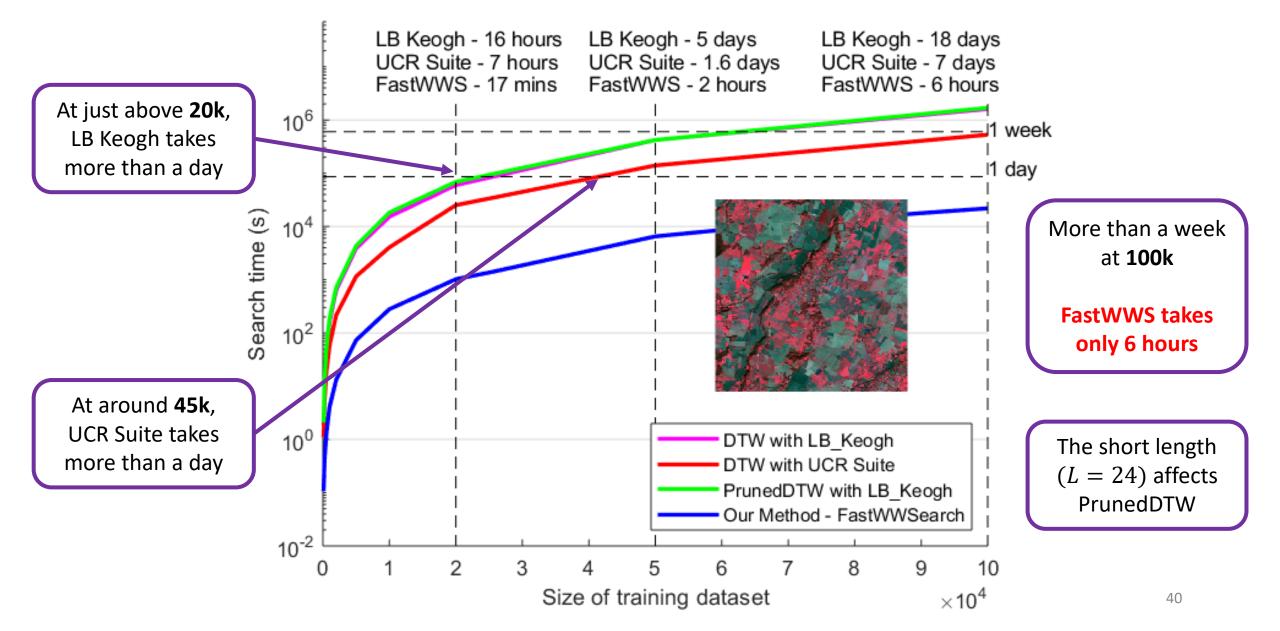
- LOO-CV with NN Search
 - 1. DTW with LB Keogh (Baseline)
 - 2. UCR Suite
 - 3. Pruned DTW with LB Keogh
 - 4. UCR Suite with Pruned DTW
- LOO-CV with FastWWS
- Exhaustive search on all methods
- Average results over 10 runs for different reshuffling of T
- 85 benchmark time series datasets http://www.cs.ucr.edu/~eamonn/time_series_data/

```
for w = 0 to L do
  error = 0
  for each s in T do
    nn<sub>s</sub> = nn_search(s, T\s, w)
    if nn<sub>s</sub>. class ≠ s. class then error++
  if error < bestError then
    bestWW = w
    bestError = error</pre>
```

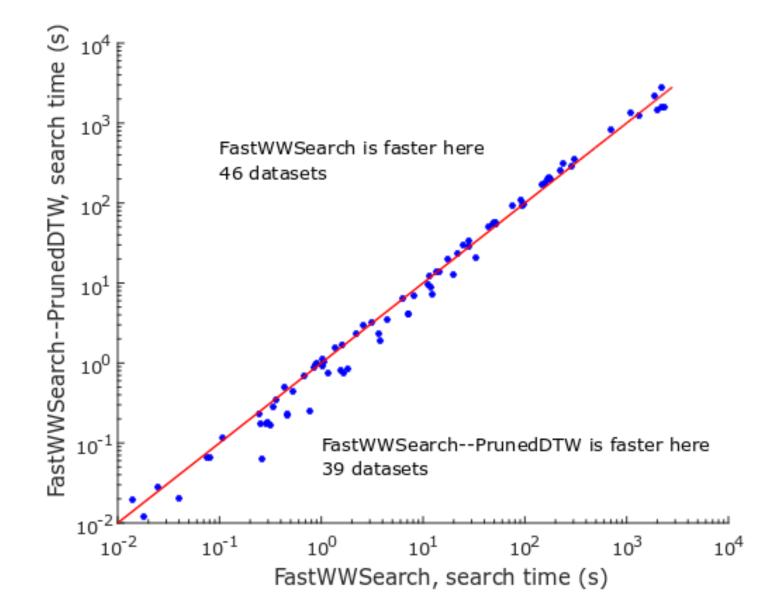
FastWWS is FASTER and more EFFICIENT than all known methods!



FastWWS can SCALE too!

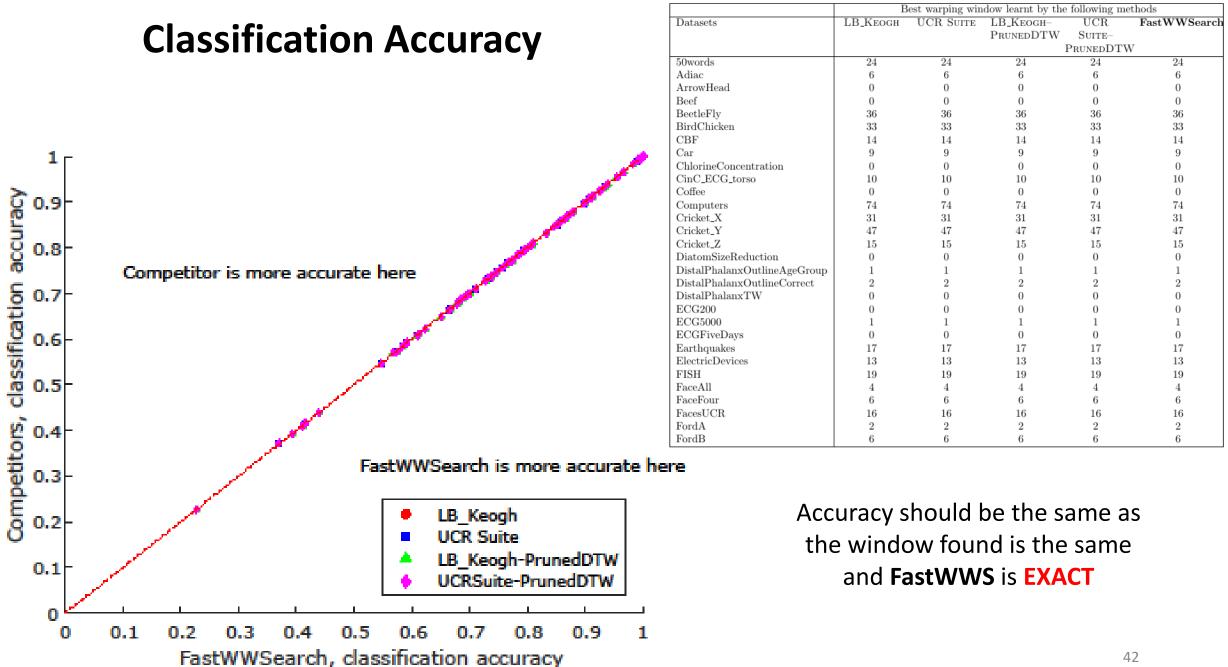


FastWWS with PrunedDTW



FastWWS-PrunedDTW

- 1. Compute Euclidean Distance (w = 0)
- 2. Use it as upper bound to prune DTW at larger window
- Not necessary faster
- FastWWS is faster on 55% of the Benchmark datasets
- Due to overhead in **PrunedDTW** in checking the upper bounds



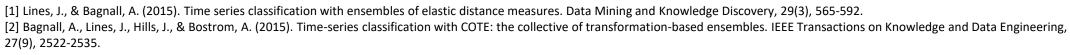
Conclusions

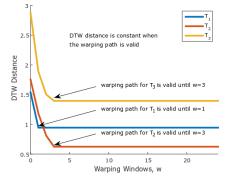
- A novel and exact algorithm to speedup the search for the best parameter (warping window) for DTW
 - FastWWS is more EFFICIENT and FASTER
 - FastWWS can SCALE
- Our results, datasets and source code are online at
 - https://bit.ly/SDM18
 - <u>https://github.com/ChangWeiTan/FastWWSearch</u>
 - Slides: http://changweitan.com/research/SDM18-slides.pdf

Future Work

- Search for the best parameter for other TS similarity functions
 - LCSS (δ, ε) , MSM (c), ERP (g, λ) etc.
 - Satisfies the three properties:
 - 1. Its **distance** stays **valid** for some parameters
 - 2. Its **distance** is **monotone** with its parameters
 - 3. Its lower bound is monotone with its parameters

- Elastic Ensembles (EE) [1]
- Collective of Transformation-Based Ensembles (COTE) [2]







This work was supported by the Australian Research Council under grant DE170100037. This material is based upon work supported by the Air Force Office of Scientific Research, Asian Office of Aerospace Research and Development (AOARD) under award number FA2386-16-1-4023

